第二节 对象模型 [2]_PHP教程
PHP5有一个单重继承的,限制访问的,可以重载的对象模型. 本章稍后会详细讨论的”继承”,包含类间的父-子关系. 另外,PHP支持对属性和方法的限制性访问. 你可以声明成员为private,不允许外部类访问. 最后,PHP允许一个子类从它的父类中重载成员.
file://haohappy注:PHP4中没有private,只有public.private对于更好地实现封装很有好处.
PHP5的对象模型把对象看成与任何其它数据类型不同,通过引用来传递. PHP不要求你通过引用(reference)显性传递和返回对象. 在本章的最后将会详细阐述基于句柄的对象模型. 它是PHP5中最重要的新特性.
有了更直接的对象模型,基于句柄的体系有附加的优势: 效率提高, 占用内存少,并且具有更大的灵活性.
在PHP的前几个版本中,脚本默认复制对象.现在PHP5只移动句柄,需要更少的时间. 脚本执行效率的提升是由于避免了不必要的复制. 在对象体系带来复杂性的同时,也带来了执行效率上的收益. 同时,减少复制意味着占用更少的内存,可以留出更多内存给其它操作,这也使效率提高.
file://haohappy注:基于句柄,就是说两个对象可以指向同一块内存,既减少了复制动作,又减少对内存的占用.
Zand引擎2具有更大的灵活性. 一个令人高兴的发展是允许析构--在对象销毁之前执行一个类方法. 这对于利用内存也很有好处,让PHP清楚地知道什么时候没有对象的引用,把空出的内存分配到其它用途。

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











기존 컴퓨팅을 능가할 뿐만 아니라 더 낮은 비용으로 더 효율적인 성능을 달성하는 인공 지능 모델을 상상해 보세요. 이것은 공상과학 소설이 아닙니다. DeepSeek-V2[1], 세계에서 가장 강력한 오픈 소스 MoE 모델이 여기에 있습니다. DeepSeek-V2는 경제적인 훈련과 효율적인 추론이라는 특징을 지닌 전문가(MoE) 언어 모델의 강력한 혼합입니다. 이는 236B 매개변수로 구성되며, 그 중 21B는 각 마커를 활성화하는 데 사용됩니다. DeepSeek67B와 비교하여 DeepSeek-V2는 더 강력한 성능을 제공하는 동시에 훈련 비용을 42.5% 절감하고 KV 캐시를 93.3% 줄이며 최대 생성 처리량을 5.76배로 늘립니다. DeepSeek은 일반 인공지능을 연구하는 회사입니다.

이달 초 MIT와 기타 기관의 연구자들은 MLP에 대한 매우 유망한 대안인 KAN을 제안했습니다. KAN은 정확성과 해석성 측면에서 MLP보다 뛰어납니다. 그리고 매우 적은 수의 매개변수로 더 많은 수의 매개변수를 사용하여 실행되는 MLP보다 성능이 뛰어날 수 있습니다. 예를 들어 저자는 KAN을 사용하여 더 작은 네트워크와 더 높은 수준의 자동화로 DeepMind의 결과를 재현했다고 밝혔습니다. 구체적으로 DeepMind의 MLP에는 약 300,000개의 매개변수가 있는 반면 KAN에는 약 200개의 매개변수만 있습니다. KAN은 MLP와 같이 강력한 수학적 기반을 가지고 있으며, KAN은 Kolmogorov-Arnold 표현 정리를 기반으로 합니다. 아래 그림과 같이 KAN은

함수 상속에서는 "기본 클래스 포인터" 및 "파생 클래스 포인터"를 사용하여 상속 메커니즘을 이해합니다. 기본 클래스 포인터가 파생 클래스 개체를 가리키는 경우 상향 변환이 수행되고 기본 클래스 멤버에만 액세스됩니다. 파생 클래스 포인터가 기본 클래스 개체를 가리키는 경우 하향 캐스팅이 수행되므로(안전하지 않음) 주의해서 사용해야 합니다.

표적 탐지는 자율주행 시스템에서 상대적으로 성숙한 문제이며, 그 중 보행자 탐지는 가장 먼저 배포되는 알고리즘 중 하나입니다. 대부분의 논문에서 매우 포괄적인 연구가 수행되었습니다. 그러나 서라운드 뷰를 위한 어안 카메라를 사용한 거리 인식은 상대적으로 덜 연구되었습니다. 큰 방사형 왜곡으로 인해 표준 경계 상자 표현은 어안 카메라에서 구현하기 어렵습니다. 위의 설명을 완화하기 위해 확장된 경계 상자, 타원 및 일반 다각형 디자인을 극/각 표현으로 탐색하고 인스턴스 분할 mIOU 메트릭을 정의하여 이러한 표현을 분석합니다. 제안된 다각형 형태의 모델 fisheyeDetNet은 다른 모델보다 성능이 뛰어나며 동시에 자율 주행을 위한 Valeo fisheye 카메라 데이터 세트에서 49.5% mAP를 달성합니다.

테슬라의 로봇 옵티머스(Optimus)의 최신 영상이 공개됐는데, 이미 공장에서 작동이 가능한 상태다. 정상 속도에서는 배터리(테슬라의 4680 배터리)를 다음과 같이 분류합니다. 공식은 또한 20배 속도로 보이는 모습을 공개했습니다. 작은 "워크스테이션"에서 따고 따고 따고 : 이번에 출시됩니다. 영상에는 옵티머스가 공장에서 이 작업을 전 과정에 걸쳐 사람의 개입 없이 완전히 자율적으로 완료하는 모습이 담겨 있습니다. 그리고 Optimus의 관점에서 보면 자동 오류 수정에 중점을 두고 구부러진 배터리를 집어 넣을 수도 있습니다. NVIDIA 과학자 Jim Fan은 Optimus의 손에 대해 높은 평가를 했습니다. Optimus의 손은 세계의 다섯 손가락 로봇 중 하나입니다. 가장 능숙합니다. 손은 촉각적일 뿐만 아니라

1. 소개 지난 몇 년 동안 YOLO는 계산 비용과 감지 성능 간의 효과적인 균형으로 인해 실시간 객체 감지 분야에서 지배적인 패러다임이 되었습니다. 연구원들은 YOLO의 아키텍처 설계, 최적화 목표, 데이터 확장 전략 등을 탐색하여 상당한 진전을 이루었습니다. 동시에 사후 처리를 위해 NMS(비최대 억제)에 의존하면 YOLO의 엔드투엔드 배포가 방해되고 추론 대기 시간에 부정적인 영향을 미칩니다. YOLO에서는 다양한 구성 요소의 설계에 포괄적이고 철저한 검사가 부족하여 상당한 계산 중복이 발생하고 모델 기능이 제한됩니다. 이는 최적이 아닌 효율성을 제공하며 성능 향상을 위한 상대적으로 큰 잠재력을 제공합니다. 이 작업의 목표는 사후 처리와 모델 아키텍처 모두에서 YOLO의 성능 효율성 경계를 더욱 향상시키는 것입니다. 이를 위해

FP8 이하의 부동 소수점 수량화 정밀도는 더 이상 H100의 "특허"가 아닙니다! Lao Huang은 모든 사람이 INT8/INT4를 사용하기를 원했고 Microsoft DeepSpeed 팀은 NVIDIA의 공식 지원 없이 A100에서 FP6을 실행하기 시작했습니다. 테스트 결과에 따르면 A100에 대한 새로운 방법 TC-FPx의 FP6 양자화는 INT4에 가깝거나 때로는 더 빠르며 후자보다 정확도가 더 높은 것으로 나타났습니다. 또한 오픈 소스로 제공되고 DeepSpeed와 같은 딥 러닝 추론 프레임워크에 통합된 엔드투엔드 대규모 모델 지원도 있습니다. 이 결과는 대형 모델 가속화에도 즉각적인 영향을 미칩니다. 이 프레임워크에서는 단일 카드를 사용하여 Llama를 실행하면 처리량이 듀얼 카드보다 2.65배 더 높습니다. 하나

Open-Sora는 오픈 소스 커뮤니티에서 조용히 업데이트되었으며 이제 최대 720p의 해상도로 최대 16초의 비디오 생성을 지원하고 텍스트-이미지, 텍스트-비디오, 이미지-비디오, 모든 종횡비의 비디오 대 비디오 및 무한히 긴 비디오의 생성 요구. 한번 시험해 봅시다. 가로 화면 크리스마스 설경을 생성하고 B 사이트에 게시한 후 세로 화면을 생성하고 Douyin을 사용하여 16초 길이의 동영상을 생성하면 이제 누구나 시나리오에 중독되는 삶을 살 수 있습니다. 지침 GitHub: https://github.com/hpcaitech/Open-Sora 더욱 멋진 점은 Open-Sora가 최신 모델 아키텍처, 최신 모델 가중치, 다중 시간/해상도/장기적을 포함하여 여전히 모두 오픈 소스라는 것입니다.
