백엔드 개발 파이썬 튜토리얼 Python에서 목록과 튜플의 사용법과 차이점에 대한 자세한 설명

Python에서 목록과 튜플의 사용법과 차이점에 대한 자세한 설명

Aug 04, 2016 am 08:55 AM

1. 둘의 차이점

목록:

1. 목록 내용을 추가할 수 있습니다

2. 전체 목록 개수에서 특정 목록 세그먼트가 나타나는 횟수를 계산할 수 있습니다

3. 문자열을 삽입하고 전체 문자열의 각 문자를 목록 세그먼트로 분할하여 목록 확장에 추가할 수 있습니다

4. 전체 목록 인덱스에서 특정 목록 세그먼트의 위치를 ​​쿼리할 수 있습니다

5. 지정된 위치에 목록 세그먼트를 삽입할 수 있습니다

6. 목록팝의 마지막 목록 부분을 삭제할 수 있습니다

7. 지정된 목록 제거에서 목록 세그먼트를 삭제할 수 있습니다

8. 정방향, 역방향 정렬 가능

9. 문자나 숫자로 정렬할 수 있습니다

10. 목록을 정의할 때 대괄호 "[]"를 사용하세요

참고: 목록에서 두 개의 목록 세그먼트가 동일한 경우 색인을 사용하든 제거를 사용하든 최상위 목록 세그먼트가 계산됩니다

튜플:

1. 전체 튜플 개수에서 특정 튜플 세그먼트가 나타나는 횟수를 셀 수 있습니다

2. 전체 튜플 인덱스에서 특정 튜플 세그먼트의 튜플 번호를 쿼리할 수 있습니다

3. 튜플을 정의할 때 괄호 "()"를 사용하세요

2. 2. 사용방법

목록

#定义列表
>>> name_list = ['sean','tom','jack','Angelia','Daisy','jack'] 
#查看定义的列表
>>> name_list
['sean', 'tom', 'jack', 'Angelia', 'Daisy', 'jack']
#增加david列表段
>>> name_list.append('david')
>>> name_list
['sean', 'tom', 'jack', 'Angelia', 'Daisy', 'jack', 'david']
#统计david列表段出现次数
>>> name_list.count('david')
1
>>> name_list.count('jack')
2
#使用extend向列表中增加列表段
>>> name_list.extend('Hello,My name is sean')
>>> name_list
['sean', 'tom', 'jack', 'Angelia', 'Daisy', 'jack', 'david', 'H', 'e', 'l', 'l', 'o', ',', 'M', 'y', ' ', 'n', 'a', 'm', 'e', ' ', 'i', 's', ' ', 's', 'e', 'a', 'n']
#查看列表段所在的索引号,注意这里统计的jack为第一个jack id号
>>> name_list.index('jack')
2
>>> name_list.index('tom')
1
#向索引号为2的地方插入Adam
>>> name_list.insert(2,'Adam')
>>> name_list
['sean', 'tom', 'Adam', 'jack', 'Angelia', 'Daisy', 'jack', 'david', 'H', 'e', 'l', 'l', 'o', ',', 'M', 'y', ' ', 'n', 'a', 'm', 'e', ' ', 'i', 's', ' ', 's', 'e', 'a', 'n']
#删除最后一个列表段
>>> name_list.pop()
'n'
>>> name_list
['sean', 'tom', 'Adam', 'jack', 'Angelia', 'Daisy', 'jack', 'david', 'H', 'e', 'l', 'l', 'o', ',', 'M', 'y', ' ', 'n', 'a', 'm', 'e', ' ', 'i', 's', ' ', 's', 'e', 'a']
#删除指定列表段,注意这里删除的是第一个jack
>>> name_list.remove('jack')
>>> name_list
['sean', 'tom', 'Adam', 'Angelia', 'Daisy', 'jack', 'david', 'H', 'e', 'l', 'l', 'o', ',', 'M', 'y', ' ', 'n', 'a', 'm', 'e', ' ', 'i', 's', ' ', 's', 'e', 'a']
#对整个列表进行倒序
>>> name_list.reverse()
>>> name_list
['a', 'e', 's', ' ', 's', 'i', ' ', 'e', 'm', 'a', 'n', ' ', 'y', 'M', ',', 'o', 'l', 'l', 'e', 'H', 'david', 'jack', 'Daisy', 'Angelia', 'Adam', 'tom', 'sean']
#对整个列表进行倒序
>>> name_list.reverse()
>>> name_list
['sean', 'tom', 'Adam', 'Angelia', 'Daisy', 'jack', 'david', 'H', 'e', 'l', 'l', 'o', ',', 'M', 'y', ' ', 'n', 'a', 'm', 'e', ' ', 'i', 's', ' ', 's', 'e', 'a']
#对整个列表进行列表段的首字母进行排序
>>> name_list.sort()
>>> name_list
[' ', ' ', ' ', ',', 'Adam', 'Angelia', 'Daisy', 'H', 'M', 'a', 'a', 'david', 'e', 'e', 'e', 'i', 'jack', 'l', 'l', 'm', 'n', 'o', 's', 's', 'sean', 'tom', 'y']
>>> 
로그인 후 복사

튜플

#定义元组name_tuple
>>> name_tuple = ('xiaoming','xiaohong','xiaoli','xiaozhang','xiaoming')
>>> name_tuple
('xiaoming', 'xiaohong', 'xiaoli', 'xiaozhang', 'xiaoming')
#统计xiaoming、xiaohong在元组内出现的次数
>>> name_tuple.count('xiaoming')
2
>>> name_tuple.count('xiaohong')
1
#查询xiaoming、xiaohong、xiaozhang在元组内的id号
>>> name_tuple.index('xiaoming')
0
>>> name_tuple.index('xiaohong')
1
>>> name_tuple.index('xiaozhang')
3
>>> 
#尝试增加一个元组单元
>>> name_tuple.append('xiaowang')
Traceback (most recent call last):
File "<pyshell#49>", line 1, in <module>
name_tuple.append('xiaowang')
AttributeError: 'tuple' object has no attribute 'append'
>>> 
로그인 후 복사

튜플의 요소는 불변이고, 튜플의 요소는 변경 가능

>>> tuple_A = (1,2,{'k1':'v1'})
>>> for i in tuple_A:
... print i
... 
1
2
{'k1': 'v1'}
#更改元素
>>> tuple_A[2]['k1'] = 'v2'
>>> for i in tuple_A:
... print i
... 
1
2
{'k1': 'v2'}
>>> 
로그인 후 복사

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법 Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법 Mar 05, 2025 am 09:58 AM

이 튜토리얼은 Python을 사용하여 Zipf의 법칙의 통계 개념을 처리하는 방법을 보여주고 법을 처리 할 때 Python의 읽기 및 대형 텍스트 파일을 정렬하는 효율성을 보여줍니다. ZIPF 분포라는 용어가 무엇을 의미하는지 궁금 할 것입니다. 이 용어를 이해하려면 먼저 Zipf의 법칙을 정의해야합니다. 걱정하지 마세요. 지침을 단순화하려고 노력할 것입니다. Zipf의 법칙 Zipf의 법칙은 단순히 : 큰 자연어 코퍼스에서 가장 자주 발생하는 단어는 두 번째 빈번한 단어, 세 번째 빈번한 단어보다 세 번, 네 번째 빈번한 단어 등 4 배나 자주 발생합니다. 예를 살펴 보겠습니다. 미국 영어로 브라운 코퍼스를 보면 가장 빈번한 단어는 "TH입니다.

HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까? HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까? Mar 10, 2025 pm 06:54 PM

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까? Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까? Mar 10, 2025 pm 06:52 PM

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

파이썬의 수학 모듈 : 통계 파이썬의 수학 모듈 : 통계 Mar 09, 2025 am 11:40 AM

Python의 통계 모듈은 강력한 데이터 통계 분석 기능을 제공하여 생물 통계 및 비즈니스 분석과 같은 데이터의 전반적인 특성을 빠르게 이해할 수 있도록 도와줍니다. 데이터 포인트를 하나씩 보는 대신 평균 또는 분산과 같은 통계를보고 무시할 수있는 원래 데이터에서 트렌드와 기능을 발견하고 대형 데이터 세트를보다 쉽고 효과적으로 비교하십시오. 이 튜토리얼은 평균을 계산하고 데이터 세트의 분산 정도를 측정하는 방법을 설명합니다. 달리 명시되지 않는 한,이 모듈의 모든 함수는 단순히 평균을 합산하는 대신 평균 () 함수의 계산을 지원합니다. 부동 소수점 번호도 사용할 수 있습니다. 무작위로 가져옵니다 수입 통계 Fracti에서

파이썬 객체의 직렬화 및 사제화 : 1 부 파이썬 객체의 직렬화 및 사제화 : 1 부 Mar 08, 2025 am 09:39 AM

파이썬 객체의 직렬화 및 사막화는 사소한 프로그램의 주요 측면입니다. 무언가를 Python 파일에 저장하면 구성 파일을 읽거나 HTTP 요청에 응답하는 경우 객체 직렬화 및 사태화를 수행합니다. 어떤 의미에서, 직렬화와 사제화는 세계에서 가장 지루한 것들입니다. 이 모든 형식과 프로토콜에 대해 누가 걱정합니까? 일부 파이썬 객체를 지속하거나 스트리밍하여 나중에 완전히 검색하려고합니다. 이것은 세상을 개념적 차원에서 볼 수있는 좋은 방법입니다. 그러나 실제 수준에서 선택한 직렬화 체계, 형식 또는 프로토콜은 속도, 보안, 유지 보수 상태 및 프로그램의 기타 측면을 결정할 수 있습니다.

인기있는 파이썬 라이브러리와 그 용도는 무엇입니까? 인기있는 파이썬 라이브러리와 그 용도는 무엇입니까? Mar 21, 2025 pm 06:46 PM

이 기사는 Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask 및 요청과 같은 인기있는 Python 라이브러리에 대해 설명하고 과학 컴퓨팅, 데이터 분석, 시각화, 기계 학습, 웹 개발 및 H에서의 사용에 대해 자세히 설명합니다.

파이썬으로 전문 오류 처리 파이썬으로 전문 오류 처리 Mar 04, 2025 am 10:58 AM

이 튜토리얼에서는 전체 시스템 관점에서 Python의 오류 조건을 처리하는 방법을 배웁니다. 오류 처리는 설계의 중요한 측면이며 최종 사용자까지 가장 낮은 수준 (때로는 하드웨어)에서 교차합니다. y라면

아름다운 수프로 파이썬에서 웹 페이지를 긁어 내기 : 검색 및 DOM 수정 아름다운 수프로 파이썬에서 웹 페이지를 긁어 내기 : 검색 및 DOM 수정 Mar 08, 2025 am 10:36 AM

이 튜토리얼은 간단한 나무 탐색을 넘어서 DOM 조작에 중점을 둔 아름다운 수프에 대한 이전 소개를 바탕으로합니다. HTML 구조를 수정하기위한 효율적인 검색 방법과 기술을 탐색하겠습니다. 일반적인 DOM 검색 방법 중 하나는 EX입니다

See all articles