백엔드 개발 파이썬 튜토리얼 Python 성능을 향상시키는 몇 가지 방법

Python 성능을 향상시키는 몇 가지 방법

Aug 04, 2016 am 08:55 AM
python 성능 개선

파이썬 성능을 향상시키는 몇 가지 솔루션.

1. 함수 호출 최적화(공간 범위, 메모리 액세스 방지)

프로그램 최적화의 핵심은 코드 실행 시간, 메모리 공간 등 연산 범위를 최소화하는 것입니다.

1. 빅데이터 합산, sum 사용

a = range(100000)
%timeit -n 10 sum(a)
10 loops, best of 3: 3.15 ms per loop
%%timeit
  ...: s = 0
  ...: for i in a:
  ...:  s += i
  ...:
100 loops, best of 3: 6.93 ms per loop
로그인 후 복사

2. 작은 데이터를 합칠 때는 sum을 사용하지 마세요

%timeit -n 1000 s = a + b + c + d + e + f + g + h + i + j + k # 数据量较小时直接累加更快
1000 loops, best of 3: 571 ns per loop
%timeit -n 1000 s = sum([a,b,c,d,e,f,g,h,i,j,k]) # 小数据量调用 sum 函数,空间效率降低
1000 loops, best of 3: 669 ns per loop
로그인 후 복사

결론: 빅데이터의 합은 효율이 높고, 스몰데이터의 합은 직접 축적의 효율이 높다.

2. 요소를 가져오기 위한 루프 최적화(메모리 액세스를 방지하려면 스택 또는 레지스터 사용)

for lst in [(1, 2, 3), (4, 5, 6)]: # lst 索引需要额外开销
  pass
로그인 후 복사

인덱스 사용은 최대한 피해야 합니다.

for a, b, c in [(1, 2, 3), (4, 5, 6)]: # better
  pass
로그인 후 복사

각 요소에 직접 값을 할당하는 것과 같습니다.

def force():
 lst = range(4)
 for a1 in [1, 2]:
   for a2 in lst:
     for a3 in lst:
       for b1 in lst:
         for b2 in lst:
           for b3 in lst:
             for c1 in lst:
               for c2 in lst:
                 for c3 in lst:
                   for d1 in lst:
                     yield (a1, a2, a3, b1, b2, b3, c1, c2, c3, d1)
                      
%%timeit -n 10
for t in force():
  sum([t[0], t[1], t[2], t[3], t[4], t[5], t[6], t[7], t[8], t[9]])
10 loops, best of 3: 465 ms per loop
%%timeit -n 10
for a1, a2, a3, b1, b2, b3, c1, c2, c3, d1 in force():
  sum([a1, a2, a3, b1, b2, b3, c1, c2, c3, d1])
10 loops, best of 3: 360 ms per loop
로그인 후 복사

3. 제너레이터 최적화(연산 대신 조회 테이블)

def force(start, end): # 用于密码暴力破解程序
  for i in range(start, end):
    now = i
    sublst = []
    for j in range(10):
      sublst.append(i % 10) # 除法运算开销较大,比乘法大
      i //= 10
    sublst.reverse()
    yield(tuple(sublst), now)
로그인 후 복사

def force(): # better
 lst = range(5)
 for a1 in [1]:
   for a2 in lst:
     for a3 in lst:
       for b1 in lst:
         for b2 in lst:
           for b3 in lst:
             for c1 in lst:
               for c2 in lst:
                 for c3 in lst:
                   for d1 in lst:
                     yield (a1, a2, a3, b1, b2, b3, c1, c2, c3, d1)
  
로그인 후 복사

r0 = [1, 2] # 可读性与灵活性
r1 = range(10)
r2 = r3 = r4 = r5 = r6 = r7 = r8 = r9 = r1
force = ((a0, a1, a2, a3, a4, a5, a6, a7, a8, a9)
      for a0 in r0 for a1 in r1 for a2 in r2 for a3 in r3 for a4 in r4
      for a5 in r5 for a6 in r6 for a7 in r7 for a8 in r8 for a9 in r9)
로그인 후 복사

4. 전력 운용 최적화(pow(x, y, z))

def isprime(n):
  if n & 1 == 0:
    return False
  k, q = find_kq(n)
  a = randint(1, n - 1)
  if pow(a, q, n) == 1: # 比使用 a ** q % n 运算优化数倍
    return True
  for j in range(k):
    if pow(a, pow(2, j) * q, n) == n - 1: # a **((2 ** j) * q) % n
      return True
  return False
로그인 후 복사

결론: pow(x,y,z)가 x**y%z보다 낫습니다.

5. 부서 운영 최적화

In [1]: from random import getrandbits
 
In [2]: x = getrandbits(4096)
 
In [3]: y = getrandbits(2048)
 
In [4]: %timeit -n 10000 q, r = divmod(x, y)
10000 loops, best of 3: 10.7 us per loop
 
In [5]: %timeit -n 10000 q, r = x//y, x % y
10000 loops, best of 3: 21.2 us per loop
로그인 후 복사

결론: divmod가 // 및 %보다 낫습니다.

6. 최적화 알고리즘의 시간 복잡도

알고리즘의 시간 복잡도는 프로그램의 실행 효율성에 가장 큰 영향을 미칩니다. Python에서는 적절한 데이터 구조를 선택하여 시간 복잡도를 최적화할 수 있습니다. 목록과 집합은 각각 O(n)과 O(1)입니다. 시나리오마다 최적화 방법이 다릅니다. 일반적으로 분할 및 정복, 분기 및 바인딩, 탐욕스러운 동적 프로그래밍과 같은 아이디어가 있습니다.

7. 카피와 딥카피의 합리적인 활용

dict, list 등의 데이터 구조 객체의 경우 직접 할당은 참조를 사용합니다. 전체 개체를 복사해야 하는 경우도 있습니다. 이 경우 복사 패키지에서 복사와 딥카피를 사용할 수 있습니다. 이 두 기능의 차이점은 딥카피가 재귀적으로 복사한다는 것입니다. 효율성이 다릅니다:

In [23]: import copy
In [24]: %timeit -n 10 copy.copy(a)
10 loops, best of 3: 606 ns per loop
In [25]: %timeit -n 10 copy.deepcopy(a)
10 loops, best of 3: 1.17 us per loop
로그인 후 복사

timeit 뒤의 -n은 실행 횟수를 나타냅니다. 마지막 두 줄은 두 timeit의 출력에 해당하며 아래와 같습니다. 후자가 훨씬 더 느리다는 것을 알 수 있습니다.

카피에 대한 예:

>>> lists = [[]] * 3
>>> lists
[[], [], []]
>>> lists[0].append(3)
>>> lists
[[3], [3], [3]]
로그인 후 복사

[[]]는 빈 목록을 포함하는 단일 요소 목록이므로 [[]] * 3의 세 요소는 모두 이 빈 목록을 가리킵니다. 목록의 요소를 수정하면 목록도 수정됩니다. 수정 효율이 높습니다.

8. dict 또는 set을 사용하여 요소 찾기

Python 사전과 세트는 해시 테이블(c 표준 라이브러리 unordered_map과 유사)을 사용하여 구현되며 요소를 찾는 시간 복잡도는 O(1)입니다.

In [1]: r = range(10**7)
In [2]: s = set(r) # 占用 588MB 内存
In [3]: d = dict((i, 1) for i in r) # 占用 716MB 内存
In [4]: %timeit -n 10000 (10**7) - 1 in r
10000 loops, best of 3: 291 ns per loop
In [5]: %timeit -n 10000 (10**7) - 1 in s
10000 loops, best of 3: 121 ns per loop
In [6]: %timeit -n 10000 (10**7) - 1 in d
10000 loops, best of 3: 111 ns per loop
로그인 후 복사

결론: set은 메모리 사용량이 가장 작고 dict는 실행 시간이 가장 짧습니다.

9. 합리적인 사용(제너레이터) 및 생산량(메모리 절약)

In [1]: %timeit -n 10 a = (i for i in range(10**7)) # 生成器通常遍历更高效
10 loops, best of 3: 933 ns per loop
In [2]: %timeit -n 10 a = [i for i in range(10**7)]
10 loops, best of 3: 916 ms per loop
In [1]: %timeit -n 10 for x in (i for i in range(10**7)): pass
10 loops, best of 3: 749 ms per loop
In [2]: %timeit -n 10 for x in [i for i in range(10**7)]: pass
10 loops, best of 3: 1.05 s per loop
로그인 후 복사

결론: 제너레이터를 사용해 횡단해 보세요.

위 내용은 Python 성능을 향상하기 위한 몇 가지 솔루션입니다. 필요한 경우 계속해서 추가할 예정입니다.

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 채팅 명령 및 사용 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

웹 사이트 성과를 향상시키기 위해 Debian Apache Logs를 사용하는 방법 웹 사이트 성과를 향상시키기 위해 Debian Apache Logs를 사용하는 방법 Apr 12, 2025 pm 11:36 PM

이 기사는 데비안 시스템에서 Apache Logs를 분석하여 웹 사이트 성능을 향상시키는 방법을 설명합니다. 1. 로그 분석 기본 사항 Apache Log는 IP 주소, 타임 스탬프, 요청 URL, HTTP 메소드 및 응답 코드를 포함한 모든 HTTP 요청의 자세한 정보를 기록합니다. 데비안 시스템 에서이 로그는 일반적으로 /var/log/apache2/access.log 및 /var/log/apache2/error.log 디렉토리에 있습니다. 로그 구조를 이해하는 것은 효과적인 분석의 첫 번째 단계입니다. 2. 로그 분석 도구 다양한 도구를 사용하여 Apache 로그를 분석 할 수 있습니다.

파이썬 : 게임, Guis 등 파이썬 : 게임, Guis 등 Apr 13, 2025 am 12:14 AM

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

PHP 및 Python : 두 가지 인기있는 프로그래밍 언어를 비교합니다 PHP 및 Python : 두 가지 인기있는 프로그래밍 언어를 비교합니다 Apr 14, 2025 am 12:13 AM

PHP와 Python은 각각 고유 한 장점이 있으며 프로젝트 요구 사항에 따라 선택합니다. 1.PHP는 웹 개발, 특히 웹 사이트의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 간결한 구문을 가진 데이터 과학, 기계 학습 및 인공 지능에 적합하며 초보자에게 적합합니다.

Debian Readdir가 다른 도구와 통합하는 방법 Debian Readdir가 다른 도구와 통합하는 방법 Apr 13, 2025 am 09:42 AM

데비안 시스템의 readdir 함수는 디렉토리 컨텐츠를 읽는 데 사용되는 시스템 호출이며 종종 C 프로그래밍에 사용됩니다. 이 기사에서는 ReadDir를 다른 도구와 통합하여 기능을 향상시키는 방법을 설명합니다. 방법 1 : C 언어 프로그램을 파이프 라인과 결합하고 먼저 C 프로그램을 작성하여 readDir 함수를 호출하고 결과를 출력하십시오.#포함#포함#포함#포함#includinTmain (intargc, char*argv []) {dir*dir; structdirent*entry; if (argc! = 2) {

DDOS 공격 탐지에서 데비안 스나이퍼의 역할 DDOS 공격 탐지에서 데비안 스나이퍼의 역할 Apr 12, 2025 pm 10:42 PM

이 기사에서는 DDOS 공격 탐지 방법에 대해 설명합니다. "Debiansniffer"의 직접적인 적용 사례는 발견되지 않았지만 DDOS 공격 탐지에 다음과 같은 방법을 사용할 수 있습니다. 효과적인 DDOS 공격 탐지 기술 : 트래픽 분석을 기반으로 한 탐지 : 갑작스런 트래픽 성장, 특정 포트에서의 연결 감지 등의 비정상적인 네트워크 트래픽 패턴을 모니터링하여 DDOS 공격을 식별합니다. 예를 들어, Pyshark 및 Colorama 라이브러리와 결합 된 Python 스크립트는 실시간으로 네트워크 트래픽을 모니터링하고 경고를 발행 할 수 있습니다. 통계 분석에 기반한 탐지 : 데이터와 같은 네트워크 트래픽의 통계적 특성을 분석하여

파이썬과 시간 : 공부 시간을 최대한 활용 파이썬과 시간 : 공부 시간을 최대한 활용 Apr 14, 2025 am 12:02 AM

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

NGINX SSL 인증서 업데이트 Debian Tutorial NGINX SSL 인증서 업데이트 Debian Tutorial Apr 13, 2025 am 07:21 AM

이 기사에서는 Debian 시스템에서 NginxSSL 인증서를 업데이트하는 방법에 대해 안내합니다. 1 단계 : CertBot을 먼저 설치하십시오. 시스템에 CERTBOT 및 PYTHON3-CERTBOT-NGINX 패키지가 설치되어 있는지 확인하십시오. 설치되지 않은 경우 다음 명령을 실행하십시오. sudoapt-getupdatesudoapt-getinstallcertbotpython3-certbot-nginx 2 단계 : 인증서 획득 및 구성 rectbot 명령을 사용하여 nginx를 획득하고 nginx를 구성하십시오.

Debian OpenSSL에서 HTTPS 서버를 구성하는 방법 Debian OpenSSL에서 HTTPS 서버를 구성하는 방법 Apr 13, 2025 am 11:03 AM

데비안 시스템에서 HTTPS 서버를 구성하려면 필요한 소프트웨어 설치, SSL 인증서 생성 및 SSL 인증서를 사용하기 위해 웹 서버 (예 : Apache 또는 Nginx)를 구성하는 등 여러 단계가 포함됩니다. 다음은 Apacheweb 서버를 사용하고 있다고 가정하는 기본 안내서입니다. 1. 필요한 소프트웨어를 먼저 설치하고 시스템이 최신 상태인지 확인하고 Apache 및 OpenSSL을 설치하십시오 : Sudoaptupdatesudoaptupgradesudoaptinsta

See all articles