백엔드 개발 파이썬 튜토리얼 상대적으로 메모리를 절약하는 희소 행렬 Python 저장소 솔루션

상대적으로 메모리를 절약하는 희소 행렬 Python 저장소 솔루션

Oct 18, 2016 am 09:54 AM

추천 시스템은 실제로 수학에서 희소 행렬인 user_id, item_id, rating과 같은 데이터를 처리해야 하는 경우가 많습니다. Scipy는 이 문제를 해결하기 위해 희소 모듈을 제공하지만 scipy.sparse에는 사용하기에 적합하지 않은 많은 문제가 있습니다. , data[i, ...], data[..., j], data[i, j] 빠른 슬라이싱을 동시에 지원할 수 없습니다. 2. 데이터가 메모리에 저장되므로 대용량 데이터를 잘 지원할 수 없습니다. .을 다루다.

데이터[i, ...], 데이터[..., j]의 빠른 슬라이싱을 지원하려면 i 또는 j의 데이터를 동시에 중앙에 저장해야 합니다. 대용량 데이터, 데이터도 필요합니다. 그 중 일부는 하드 디스크에 배치되고 메모리는 버퍼로 사용됩니다. 여기서 해결 방법은 비교적 간단합니다. 특정 i(예: 9527)의 경우 해당 데이터는 dict['i9527']에 저장됩니다. , 모든 데이터는 dict['j3306']에 저장됩니다. data[9527, ...]를 제거해야 하는 경우 dict['i9527']는 원래 dict 객체입니다. , 특정 j에 해당하는 값을 저장합니다. 메모리 공간을 절약하기 위해 이 dict를 바이너리 문자열 형식으로 저장하고 코드를 직접 입력합니다:

'''
Sparse Matrix
'''
import struct
import numpy as np
import bsddb
from cStringIO import StringIO
  
class DictMatrix():
    def __init__(self, container = {}, dft = 0.0):
        self._data  = container
        self._dft   = dft
        self._nums  = 0
  
    def __setitem__(self, index, value):
        try:
            i, j = index
        except:
            raise IndexError('invalid index')
  
        ik = ('i%d' % i)
        # 为了节省内存,我们把j, value打包成字二进制字符串
        ib = struct.pack('if', j, value)
        jk = ('j%d' % j)
        jb = struct.pack('if', i, value)
  
        try:
            self._data[ik] += ib
        except:
            self._data[ik] = ib
        try:
            self._data[jk] += jb
        except:
            self._data[jk] = jb
        self._nums += 1
  
    def __getitem__(self, index):
        try:
            i, j = index
        except:
            raise IndexError('invalid index')
  
        if (isinstance(i, int)):
            ik = ('i%d' % i)
            if not self._data.has_key(ik): return self._dft
            ret = dict(np.fromstring(self._data[ik], dtype = 'i4,f4'))
            if (isinstance(j, int)): return ret.get(j, self._dft)
  
        if (isinstance(j, int)):
            jk = ('j%d' % j)
            if not self._data.has_key(jk): return self._dft
            ret = dict(np.fromstring(self._data[jk], dtype = 'i4,f4'))
  
        return ret
  
    def __len__(self):
        return self._nums
  
    def __iter__(self):
        pass
  
    '''
    从文件中生成matrix
    考虑到dbm读写的性能不如内存,我们做了一些缓存,每1000W次批量写入一次
    考虑到字符串拼接性能不太好,我们直接用StringIO来做拼接
    '''
    def from_file(self, fp, sep = 't'):
        cnt = 0
        cache = {}
        for l in fp:
            if 10000000 == cnt:
                self._flush(cache)
                cnt = 0
                cache = {}
            i, j, v = [float(i) for i in l.split(sep)]
  
            ik = ('i%d' % i)
            ib = struct.pack('if', j, v)
            jk = ('j%d' % j)
            jb = struct.pack('if', i, v)
  
            try:
                cache[ik].write(ib)
            except:
                cache[ik] = StringIO()
                cache[ik].write(ib)
  
            try:
                cache[jk].write(jb)
            except:
                cache[jk] = StringIO()
                cache[jk].write(jb)
  
            cnt += 1
            self._nums += 1
  
        self._flush(cache)
        return self._nums
  
    def _flush(self, cache):
        for k,v in cache.items():
            v.seek(0)
            s = v.read()
            try:
                self._data[k] += s
            except:
                self._data[k] = s
  
if __name__ == '__main__':
    db = bsddb.btopen(None, cachesize = 268435456)
    data = DictMatrix(db)
    data.from_file(open('/path/to/log.txt', 'r'), ',')
로그인 후 복사

4500W 등급 데이터(정수, 정수, 부동 소수점 형식) 테스트, 922MB 텍스트 파일 가져오기, 메모리 dict를 사용하여 저장, 구성은 12분 안에 완료, 1.2G 메모리 소비, 에서 bdb 저장소 사용 샘플 코드 기준으로 20분이면 구축이 완료되는데, 캐시 크기보다 그리 크지 않은 300~400MB 정도의 메모리를 차지합니다. > 1.4788초를 소모하며, 데이터를 읽는 데 약 1.5ms가 소요됩니다.

import timeit
timeit.Timer('foo = __main__.data[9527, ...]', 'import __main__').timeit(number = 1000)
로그인 후 복사
Dict 클래스를 사용하여 데이터를 저장하는 또 다른 장점은 메모리 Dict나 다른 형태의 DBM, 심지어 전설적인 Tokyo Cabinet을 사용할 수 있다는 것입니다...

좋아요, 하루만 기다려주세요. .

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Linux 터미널에서 Python 버전을 볼 때 발생하는 권한 문제를 해결하는 방법은 무엇입니까? Linux 터미널에서 Python 버전을 볼 때 발생하는 권한 문제를 해결하는 방법은 무엇입니까? Apr 01, 2025 pm 05:09 PM

Linux 터미널에서 Python 버전을 보려고 할 때 Linux 터미널에서 Python 버전을 볼 때 권한 문제에 대한 솔루션 ... Python을 입력하십시오 ...

한 데이터 프레임의 전체 열을 Python의 다른 구조를 가진 다른 데이터 프레임에 효율적으로 복사하는 방법은 무엇입니까? 한 데이터 프레임의 전체 열을 Python의 다른 구조를 가진 다른 데이터 프레임에 효율적으로 복사하는 방법은 무엇입니까? Apr 01, 2025 pm 11:15 PM

Python의 Pandas 라이브러리를 사용할 때는 구조가 다른 두 데이터 프레임 사이에서 전체 열을 복사하는 방법이 일반적인 문제입니다. 두 개의 dats가 있다고 가정 해

인기있는 파이썬 라이브러리와 그 용도는 무엇입니까? 인기있는 파이썬 라이브러리와 그 용도는 무엇입니까? Mar 21, 2025 pm 06:46 PM

이 기사는 Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask 및 요청과 같은 인기있는 Python 라이브러리에 대해 설명하고 과학 컴퓨팅, 데이터 분석, 시각화, 기계 학습, 웹 개발 및 H에서의 사용에 대해 자세히 설명합니다.

Uvicorn은 Serving_forever ()없이 HTTP 요청을 어떻게 지속적으로 듣습니까? Uvicorn은 Serving_forever ()없이 HTTP 요청을 어떻게 지속적으로 듣습니까? Apr 01, 2025 pm 10:51 PM

Uvicorn은 HTTP 요청을 어떻게 지속적으로 듣습니까? Uvicorn은 ASGI를 기반으로 한 가벼운 웹 서버입니다. 핵심 기능 중 하나는 HTTP 요청을 듣고 진행하는 것입니다 ...

문자열을 통해 객체를 동적으로 생성하고 방법을 파이썬으로 호출하는 방법은 무엇입니까? 문자열을 통해 객체를 동적으로 생성하고 방법을 파이썬으로 호출하는 방법은 무엇입니까? Apr 01, 2025 pm 11:18 PM

파이썬에서 문자열을 통해 객체를 동적으로 생성하고 메소드를 호출하는 방법은 무엇입니까? 특히 구성 또는 실행 해야하는 경우 일반적인 프로그래밍 요구 사항입니다.

10 시간 이내에 프로젝트 및 문제 중심 방법에서 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법? 10 시간 이내에 프로젝트 및 문제 중심 방법에서 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법? Apr 02, 2025 am 07:18 AM

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

정규 표현이란 무엇입니까? 정규 표현이란 무엇입니까? Mar 20, 2025 pm 06:25 PM

정규 표현식은 프로그래밍의 패턴 일치 및 텍스트 조작을위한 강력한 도구이며 다양한 응용 프로그램에서 텍스트 처리의 효율성을 높입니다.

See all articles