Python을 사용하여 다양한 정렬 알고리즘 구현
일반적인 중앙 집중식 정렬 알고리즘 요약
병합 정렬
병합 정렬이라고도 불리는 병합 정렬은 분할 정복 방법의 일반적인 응용 프로그램입니다. . 분할 정복의 개념은 각 문제를 작은 문제로 분해하고 각각의 작은 문제를 해결한 다음 병합하는 것입니다.
특정 병합 정렬은 순서가 지정되지 않은 숫자 집합을 n/2로 단 하나의 요소가 있는 하위 항목으로 재귀적으로 분해하는 것이며, 하나의 요소는 이미 정렬되어 있습니다. 그런 다음 순서가 지정된 하위 요소를 병합합니다.
병합 과정은 정렬된 두 하위 시퀀스를 비교하여 먼저 두 하위 시퀀스에서 가장 작은 요소를 선택하고 두 요소 중 가장 작은 하위 시퀀스를 선택한 다음 하위 시퀀스에서 제거하는 것입니다.
제거 및 두 하위 시퀀스가 병합될 때까지 최종 결과 세트에 추가합니다.
코드는 다음과 같습니다.
#!/usr/bin/python import sys def merge(nums, first, middle, last): ''''' merge ''' # 切片边界,左闭右开并且是了0为开始 lnums = nums[first:middle+1] rnums = nums[middle+1:last+1] lnums.append(sys.maxint) rnums.append(sys.maxint) l = 0 r = 0 for i in range(first, last+1): if lnums[l] < rnums[r]: nums[i] = lnums[l] l+=1 else: nums[i] = rnums[r] r+=1 def merge_sort(nums, first, last): ''''' merge sort merge_sort函数中传递的是下标,不是元素个数 ''' if first < last: middle = (first + last)/2 merge_sort(nums, first, middle) merge_sort(nums, middle+1, last) merge(nums, first, middle,last) if __name__ == '__main__': nums = [10,8,4,-1,2,6,7,3] print 'nums is:', nums merge_sort(nums, 0, 7) print 'merge sort:', nums
안정적, 시간 복잡도 O(nlog n)
삽입 정렬
코드는 다음과 같습니다. :
#!/usr/bin/python import sys def insert_sort(a):
''''' 삽입 정렬
이미 정렬된 데이터 시퀀스가 있는데, 이 정렬된 데이터 시퀀스에 숫자를 삽입해야 합니다.
하지만 이 데이터 시퀀스는 삽입 후에도 순서대로 유지되어야 합니다. 처음에는 하나의 요소가 분명히 순서대로 있고
요소를 적절한 위치에 삽입한 다음 세 번째 요소를 삽입하는 식으로
'''
a_len = len(a) if a_len = 0 and a[j] > key: a[j+1] = a[j] j-=1 a[j+1] = key return a if __name__ == '__main__': nums = [10,8,4,-1,2,6,7,3] print 'nums is:', nums insert_sort(nums) print 'insert sort:', nums
안정적, 시간 복잡도 O(n^2)
두 요소의 값을 교환하려면 Python에서 다음과 같이 작성할 수 있습니다. a, b = b, a. 사실 이는 할당 때문입니다. 기호의 왼쪽과 오른쪽은 튜플
입니다(파이썬에서는 튜플이 실제로 대괄호 대신 쉼표 ","로 구분된다는 점을 강조해야 합니다).
선택 정렬
선택 정렬은 간단하고 직관적인 정렬 알고리즘입니다. 작동 방식은 다음과 같습니다. 먼저, 정렬되지 않은 시퀀스에서 가장 작은(큰) 요소를 찾아
정렬된 시퀀스의 시작 위치에 저장한 다음, 정렬되지 않은 나머지 요소에서 계속해서 가장 작은(큰) 요소를 찾고, 그런 다음 정렬된 순서의 끝에 넣습니다. 모든
요소가 정렬될 때까지 계속됩니다.
import sys def select_sort(a):
''''' 선택 정렬
각 패스는 정렬할 데이터 요소에서 가장 작은(또는 가장 큰) 요소를 선택하고,
순서에 배치합니다. 정렬할 모든 데이터 요소가 소진될 때까지 정렬된 배열의 끝입니다.
선택 정렬은 불안정한 정렬 방법입니다.
' ' '
a_len=len(a) for i in range(a_len):#在0-n-1上依次选择相应大小的元素 min_index = i#记录最小元素的下标 for j in range(i+1, a_len):#查找最小值 if(a[j]<a[min_index]): min_index=j if min_index != i:#找到最小元素进行交换 a[i],a[min_index] = a[min_index],a[i] if __name__ == '__main__': A = [10, -3, 5, 7, 1, 3, 7] print 'Before sort:',A select_sort(A) print 'After sort:',A
불안정, 시간 복잡도 O(n^2)
힐 정렬
힐 정렬 내림차순 증분 정렬 알고리즘이라고도 하는 Hill 정렬은 비안정 정렬 알고리즘입니다. 이 방법은 DL이기 때문에 증분 정렬 감소라고도 합니다. Shell은 1959년에 제안된 이름을 따서 명명되었습니다.
먼저 n보다 작은 정수 d1을 첫 번째 증분으로 취하고 파일의 모든 레코드를 d1 그룹으로 나눕니다. 거리가 d1의 배수인 모든 레코드는 동일한 그룹에 배치됩니다. 각 그룹 내에서 첫 번째 정렬
그런 다음 두 번째 증분 d2 은 불안정하고, 평균 시간 복잡도는 O(nlogn)이고 최악의 시간은 O(n^s)1 힙 정렬(Heap Sort) "힙"의 정의: 시작 인덱스가 0인 "힙"에서: 노드의 오른쪽 자식 노드 i는 위치 2 * i + 24) 노드 i의 상위 노드는 바닥( (i - 1) / 2) 위치에 있습니다. 바닥은 "반올림" 연산을 나타냅니다. 힙의 특성: 각 노드의 키 값은 항상 상위 노드보다 크거나 작아야 합니다. "최대 힙": "힙"의 루트 노드가 저장합니다. 가장 큰 키 값을 가진 노드. 즉, "힙"에 있는 각 노드의 키 값은 항상 해당 하위 노드보다 큽니다. 위로 이동, 아래로 이동: 노드의 키 값이 상위 노드보다 크면 "위로 이동" 작업을 수행해야 합니다. 노드를 상위 노드 의 위치로 이동하고 상위 노드가 해당 위치에 도달하도록 한 다음 노드를 계속 판단하고 노드가 더 이상 노드보다 크지 않을 때까지 "위로 이동"을 멈추지 않습니다. 상위 노드. 이제 "아래로 이동" 작업을 살펴보겠습니다. 노드의 키 값을 더 작은 값으로 변경할 때는 "아래로 이동"해야 합니다. 방법: 먼저 최대 힙(시간 복잡도 O(n))을 구축한 다음 매번 루트 노드를 마지막 위치의 노드와 교환하면 되며, 그런 다음 마지막 One 위치를 제외하고 교환 후 루트 노드의 힙이 조정됩니다(시간 복잡도 O(lgn)). 즉, 루트 노드가 "아래로 이동"됩니다. 힙 정렬의 전체 시간 복잡도는 O(nlgn)입니다. 코드는 다음과 같습니다. 不稳定,时间复杂度 O(nlog n) 快速排序 快速排序算法和合并排序算法一样,也是基于分治模式。对子数组A[p...r]快速排序的分治过程的三个步骤为: 分解:把数组A[p...r]分为A[p...q-1]与A[q+1...r]两部分,其中A[p...q-1]中的每个元素都小于等于A[q]而A[q+1...r]中的每个元素都大于等于A[q]; 解决:通过递归调用快速排序,对子数组A[p...q-1]和A[q+1...r]进行排序; 合并:因为两个子数组是就地排序的,所以不需要额外的操作。 对于划分partition 每一轮迭代的开始,x=A[r], 对于任何数组下标k,有: 1) 如果p≤k≤i,则A[k]≤x。 2) 如果i+1≤k≤j-1,则A[k]>x。 3) 如果k=r,则A[k]=x。 代码如下: 不稳定,时间复杂度 最理想 O(nlogn)最差时间O(n^2) 说下python中的序列: 列表、元组和字符串都是序列,但是序列是什么,它们为什么如此特别呢?序列的两个主要特点是索引操作符和切片操作符。索引操作符让我们可以从序列中抓取一个特定项目。切片操作符让我们能够获取序列的一个切片,即一部分序列,如:a = ['aa','bb','cc'], print a[0] 为索引操作,print a[0:2]为切片操作。def shell_sort(a):
''''' shell排序
'''
a_len=len(a)
gap=a_len/2#增量
while gap>0:
for i in range(a_len):#对同一个组进行选择排序
m=i
j=i+1
while j<a_len:
if a[j]<a[m]:
m=j
j+=gap#j增加gap
if m!=i:
a[m],a[i]=a[i],a[m]
gap/=2
if __name__ == '__main__':
A = [10, -3, 5, 7, 1, 3, 7]
print 'Before sort:',A
shell_sort(A)
print 'After sort:',A
#!/usr/bin env python
# 数组编号从 0开始
def left(i):
return 2*i +1
def right(i):
return 2*i+2
#保持最大堆性质 使以i为根的子树成为最大堆
def max_heapify(A, i, heap_size):
if heap_size <= 0:
return
l = left(i)
r = right(i)
largest = i # 选出子节点中较大的节点
if l A[largest]:
largest = l
if r A[largest]:
largest = r
if i != largest :#说明当前节点不是最大的,下移
A[i], A[largest] = A[largest], A[i] #交换
max_heapify(A, largest, heap_size)#继续追踪下移的点
#print A
# 建堆
def bulid_max_heap(A):
heap_size = len(A)
if heap_size >1:
node = heap_size/2 -1
while node >= 0:
max_heapify(A, node, heap_size)
node -=1
# 堆排序 下标从0开始
def heap_sort(A):
bulid_max_heap(A)
heap_size = len(A)
i = heap_size - 1
while i > 0 :
A[0],A[i] = A[i], A[0] # 堆中的最大值存入数组适当的位置,并且进行交换
heap_size -=1 # heap 大小 递减 1
i -= 1 # 存放堆中最大值的下标递减 1
max_heapify(A, 0, heap_size)
if __name__ == '__main__' :
A = [10, -3, 5, 7, 1, 3, 7]
print 'Before sort:',A
heap_sort(A)
print 'After sort:',A
#!/usr/bin/env python
# 快速排序
'''''
划分 使满足 以A[r]为基准对数组进行一个划分,比A[r]小的放在左边,
比A[r]大的放在右边
快速排序的分治partition过程有两种方法,
一种是上面所述的两个指针索引一前一后逐步向后扫描的方法,
另一种方法是两个指针从首位向中间扫描的方法。
'''
#p,r 是数组A的下标
def partition1(A, p ,r):
'''''
方法一,两个指针索引一前一后逐步向后扫描的方法
'''
x = A[r]
i = p-1
j = p
while j < r:
if A[j] < x:
i +=1
A[i], A[j] = A[j], A[i]
j += 1
A[i+1], A[r] = A[r], A[i+1]
return i+1
def partition2(A, p, r):
'''''
两个指针从首尾向中间扫描的方法
'''
i = p
j = r
x = A[p]
while i = x and i < j:
j -=1
A[i] = A[j]
while A[i]<=x and i < j:
i +=1
A[j] = A[i]
A[i] = x
return i
# quick sort
def quick_sort(A, p, r):
'''''
快速排序的最差时间复杂度为O(n2),平时时间复杂度为O(nlgn)
'''
if p < r:
q = partition2(A, p, r)
quick_sort(A, p, q-1)
quick_sort(A, q+1, r)
if __name__ == '__main__':
A = [5,-4,6,3,7,11,1,2]
print 'Before sort:',A
quick_sort(A, 0, 7)
print 'After sort:',A

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











PHP는 웹 개발 및 빠른 프로토 타이핑에 적합하며 Python은 데이터 과학 및 기계 학습에 적합합니다. 1.PHP는 간단한 구문과 함께 동적 웹 개발에 사용되며 빠른 개발에 적합합니다. 2. Python은 간결한 구문을 가지고 있으며 여러 분야에 적합하며 강력한 라이브러리 생태계가 있습니다.

PHP는 주로 절차 적 프로그래밍이지만 객체 지향 프로그래밍 (OOP)도 지원합니다. Python은 OOP, 기능 및 절차 프로그래밍을 포함한 다양한 패러다임을 지원합니다. PHP는 웹 개발에 적합하며 Python은 데이터 분석 및 기계 학습과 같은 다양한 응용 프로그램에 적합합니다.

VS 코드는 파이썬을 작성하는 데 사용될 수 있으며 파이썬 애플리케이션을 개발하기에 이상적인 도구가되는 많은 기능을 제공합니다. 사용자는 다음을 수행 할 수 있습니다. Python 확장 기능을 설치하여 코드 완료, 구문 강조 및 디버깅과 같은 기능을 얻습니다. 디버거를 사용하여 코드를 단계별로 추적하고 오류를 찾아 수정하십시오. 버전 제어를 위해 git을 통합합니다. 코드 서식 도구를 사용하여 코드 일관성을 유지하십시오. 라인 도구를 사용하여 잠재적 인 문제를 미리 발견하십시오.

VS 코드는 Windows 8에서 실행될 수 있지만 경험은 크지 않을 수 있습니다. 먼저 시스템이 최신 패치로 업데이트되었는지 확인한 다음 시스템 아키텍처와 일치하는 VS 코드 설치 패키지를 다운로드하여 프롬프트대로 설치하십시오. 설치 후 일부 확장은 Windows 8과 호환되지 않을 수 있으며 대체 확장을 찾거나 가상 시스템에서 새로운 Windows 시스템을 사용해야합니다. 필요한 연장을 설치하여 제대로 작동하는지 확인하십시오. Windows 8에서는 VS 코드가 가능하지만 더 나은 개발 경험과 보안을 위해 새로운 Windows 시스템으로 업그레이드하는 것이 좋습니다.

VS 코드 확장은 악의적 인 코드 숨기기, 취약성 악용 및 합법적 인 확장으로 자위하는 등 악성 위험을 초래합니다. 악의적 인 확장을 식별하는 방법에는 게시자 확인, 주석 읽기, 코드 확인 및주의해서 설치가 포함됩니다. 보안 조치에는 보안 인식, 좋은 습관, 정기적 인 업데이트 및 바이러스 백신 소프트웨어도 포함됩니다.

vs 코드에서는 다음 단계를 통해 터미널에서 프로그램을 실행할 수 있습니다. 코드를 준비하고 통합 터미널을 열어 코드 디렉토리가 터미널 작업 디렉토리와 일치하는지 확인하십시오. 프로그래밍 언어 (예 : Python의 Python Your_file_name.py)에 따라 실행 명령을 선택하여 성공적으로 실행되는지 여부를 확인하고 오류를 해결하십시오. 디버거를 사용하여 디버깅 효율을 향상시킵니다.

Python은 부드러운 학습 곡선과 간결한 구문으로 초보자에게 더 적합합니다. JavaScript는 가파른 학습 곡선과 유연한 구문으로 프론트 엔드 개발에 적합합니다. 1. Python Syntax는 직관적이며 데이터 과학 및 백엔드 개발에 적합합니다. 2. JavaScript는 유연하며 프론트 엔드 및 서버 측 프로그래밍에서 널리 사용됩니다.

PHP는 1994 년에 시작되었으며 Rasmuslerdorf에 의해 개발되었습니다. 원래 웹 사이트 방문자를 추적하는 데 사용되었으며 점차 서버 측 스크립팅 언어로 진화했으며 웹 개발에 널리 사용되었습니다. Python은 1980 년대 후반 Guidovan Rossum에 의해 개발되었으며 1991 년에 처음 출시되었습니다. 코드 가독성과 단순성을 강조하며 과학 컴퓨팅, 데이터 분석 및 기타 분야에 적합합니다.
