Python 코드 최적화 팁
코드 최적화 1부
최근에 본 코드 최적화 팁을 공유해 주세요.
if 판단의 단락 특성
and의 경우 가장 적은 조건을 만족하는 것을 앞에 두도록 하여 다수의 판단을 했을 때 최소한의 조건을 만족하면 바로 다음 표현식으로 이어집니다. 시간을 절약하기 위해 계산되지 않습니다(False와 True는 여전히 False이므로)
import timeit s1 = """ a = range(2000) [i for i in a if i % 2 ==0 and i > 1900] """ s2 = """ a = range(2000) [i for i in a if i > 1900 and i % 2 ==0] """ print timeit.timeit(stmt=s1, number=1000) print timeit.timeit(stmt=s2, number=1000)
실행 결과는 다음과 같습니다.
➜ python test6.py 0.248532056808 0.195827960968 # 可以看到s2 表达式计算更快, 因为大部分情况都不满足 i>1900, 所以这些情况下, i % 2 == 0 也没有计算,从而节约了时间
or도 마찬가지로 조건을 가장 많이 만족하는 것을 먼저 올려주세요.
import timeit s1 = """ a = range(2000) [i for i in a if 10 < i <20 or 1000 < i < 2000] """ s2 = """ a = range(2000) [i for i in a if 1000 < i < 2000 or 10 < i <20] """ print timeit.timeit(stmt=s1, number=1000) print timeit.timeit(stmt=s2, number=1000)
결과 실행:
0.253124952316 0.202992200851
병합 문자열 조인
+를 반복하여 병합하는 것보다 빠르게 병합 문자열을 조인하세요.
import timeit s1 = """ a = [str(x) for x in range(2000)] s = '' for i in a: s += i """ s2 = """ a = [str(x) for x in range(2000)] s = ''.join(a) """ print timeit.timeit(stmt=s1, number=1000) print timeit.timeit(stmt=s2, number=1000)
실행 결과는 다음과 같습니다.
python test6.py 0.558945894241 0.422435998917
while 1 및 while True
python2.x에서는 True와 False가 예약어가 아니지만, 전역 변수, 이는
>>> True = 0 >>> True 0 >>> if not True: ... print '1' ... 1
따라서 다음 두 상황:
import timeit s1 = """ n = 1000000 while 1: n -= 1 if n <= 0: break """ s2 = """ n = 1000000 while True: n -= 1 if n <= 0: break """ print timeit.timeit(stmt=s1, number=100) print timeit.timeit(stmt=s2, number=100)
실행 결과는 다음과 같습니다.
➜ python test6.py 5.18007302284 6.84624099731
왜냐하면 True라고 판단할 때마다 먼저 True의 값을 찾아야 하기 때문입니다.
python3.x에서는 True가 키워드 매개변수가 되므로 위의 두 상황은 동일합니다.
cProfile, cStringIO 및 cPickle
C 버전을 사용하여 작성된 확장 프로그램은 기본 버전보다 빠릅니다. cPickle 대 pickle은 다음과 같습니다.
import timeit s1 = """ import cPickle import pickle n = range(10000) cPickle.dumps(n) """ s2 = """ import cPickle import pickle n = range(10000) pickle.dumps(n) """ print timeit.timeit(stmt=s1, number=100) print timeit.timeit(stmt=s2, number=100)
실행 결과는 다음과 같습니다.
➜ python test6.py 0.182178974152 1.70917797089
제너레이터의 합리적인 사용
차이점
()를 사용하면 생성자 객체에 필요한 메모리 공간은 리스트의 크기와 관계가 없으므로 효율성이 더 높아집니다.
import timeit s1 = """ [i for i in range (100000)] """ s2 = """ (i for i in range(100000)) """ print timeit.timeit(stmt=s1, number=1000) print timeit.timeit(stmt=s2, number=1000)
결과:
➜ python test6.py 5.44327497482 0.923446893692
그러나 루프 순회가 필요한 상황에서는 다음과 같이 반복자를 사용하는 것이 효율적이지 않습니다.
import timeit s1 = """ ls = range(1000000) def yield_func(ls): for i in ls: yield i+1 for x in yield_func(ls): pass """ s2 = """ ls = range(1000000) def not_yield_func(ls): return [i+1 for i in ls] for x in not_yield_func(ls): pass """ print timeit.timeit(stmt=s1, number=10) print timeit.timeit(stmt=s2, number=10)
결과는 다음과 같습니다.
➜ python test6.py 1.03186702728 1.01472687721
따라서 생성기를 사용하는 것은 메모리와 속도를 종합적으로 고려하는 트레이드오프입니다.
xrange
在python2.x里xrange 是纯C实现的生成器,相对于range来说,它不会一次性计算出所有值在内存中。但它的限制是只能和整型一起工作:你不能使用long或者float。
import 语句的开销
import语句有时候为了限制它们的作用范围或者节省初始化时间,被卸载函数内部,虽然python的解释器不会重复import同一个模块不会出错,但重复导入会影响部分性能。有时候为了实现懒加载(即使用的时候再加载一个开销很大的模块),可以这么做:
email = None def parse_email(): global email if email is None: import email ... # 这样一来email模块仅会被引入一次,在parse_email()被第一次调用的时候。

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











PHP는 주로 절차 적 프로그래밍이지만 객체 지향 프로그래밍 (OOP)도 지원합니다. Python은 OOP, 기능 및 절차 프로그래밍을 포함한 다양한 패러다임을 지원합니다. PHP는 웹 개발에 적합하며 Python은 데이터 분석 및 기계 학습과 같은 다양한 응용 프로그램에 적합합니다.

PHP는 웹 개발 및 빠른 프로토 타이핑에 적합하며 Python은 데이터 과학 및 기계 학습에 적합합니다. 1.PHP는 간단한 구문과 함께 동적 웹 개발에 사용되며 빠른 개발에 적합합니다. 2. Python은 간결한 구문을 가지고 있으며 여러 분야에 적합하며 강력한 라이브러리 생태계가 있습니다.

VS 코드는 파이썬을 작성하는 데 사용될 수 있으며 파이썬 애플리케이션을 개발하기에 이상적인 도구가되는 많은 기능을 제공합니다. 사용자는 다음을 수행 할 수 있습니다. Python 확장 기능을 설치하여 코드 완료, 구문 강조 및 디버깅과 같은 기능을 얻습니다. 디버거를 사용하여 코드를 단계별로 추적하고 오류를 찾아 수정하십시오. 버전 제어를 위해 git을 통합합니다. 코드 서식 도구를 사용하여 코드 일관성을 유지하십시오. 라인 도구를 사용하여 잠재적 인 문제를 미리 발견하십시오.

VS 코드는 Windows 8에서 실행될 수 있지만 경험은 크지 않을 수 있습니다. 먼저 시스템이 최신 패치로 업데이트되었는지 확인한 다음 시스템 아키텍처와 일치하는 VS 코드 설치 패키지를 다운로드하여 프롬프트대로 설치하십시오. 설치 후 일부 확장은 Windows 8과 호환되지 않을 수 있으며 대체 확장을 찾거나 가상 시스템에서 새로운 Windows 시스템을 사용해야합니다. 필요한 연장을 설치하여 제대로 작동하는지 확인하십시오. Windows 8에서는 VS 코드가 가능하지만 더 나은 개발 경험과 보안을 위해 새로운 Windows 시스템으로 업그레이드하는 것이 좋습니다.

VS 코드 확장은 악의적 인 코드 숨기기, 취약성 악용 및 합법적 인 확장으로 자위하는 등 악성 위험을 초래합니다. 악의적 인 확장을 식별하는 방법에는 게시자 확인, 주석 읽기, 코드 확인 및주의해서 설치가 포함됩니다. 보안 조치에는 보안 인식, 좋은 습관, 정기적 인 업데이트 및 바이러스 백신 소프트웨어도 포함됩니다.

Python은 부드러운 학습 곡선과 간결한 구문으로 초보자에게 더 적합합니다. JavaScript는 가파른 학습 곡선과 유연한 구문으로 프론트 엔드 개발에 적합합니다. 1. Python Syntax는 직관적이며 데이터 과학 및 백엔드 개발에 적합합니다. 2. JavaScript는 유연하며 프론트 엔드 및 서버 측 프로그래밍에서 널리 사용됩니다.

PHP는 1994 년에 시작되었으며 Rasmuslerdorf에 의해 개발되었습니다. 원래 웹 사이트 방문자를 추적하는 데 사용되었으며 점차 서버 측 스크립팅 언어로 진화했으며 웹 개발에 널리 사용되었습니다. Python은 1980 년대 후반 Guidovan Rossum에 의해 개발되었으며 1991 년에 처음 출시되었습니다. 코드 가독성과 단순성을 강조하며 과학 컴퓨팅, 데이터 분석 및 기타 분야에 적합합니다.

vs 코드에서는 다음 단계를 통해 터미널에서 프로그램을 실행할 수 있습니다. 코드를 준비하고 통합 터미널을 열어 코드 디렉토리가 터미널 작업 디렉토리와 일치하는지 확인하십시오. 프로그래밍 언어 (예 : Python의 Python Your_file_name.py)에 따라 실행 명령을 선택하여 성공적으로 실행되는지 여부를 확인하고 오류를 해결하십시오. 디버거를 사용하여 디버깅 효율을 향상시킵니다.
