win7 환경에서 출력 오류 로그를 긁어내는 솔루션
win7에서 scrapy 코드를 디버깅할 때 코드 오류가 발생하지만 로그에 출력되지 않습니다. 대신 cmd에 다음 오류가 보고됩니다.
Traceback(최근 호출 마지막):
파일 "d :python27liblogging__init__.py", 884행, Emit
stream.write(fs % msg.encode("UTF-8"))
UnicodeDecodeError: 'gbk' 코덱이 바이트를 디코딩할 수 없습니다. position 1274-1275 : 불법 멀티바이트 시퀀스
scraper.py 파일, 158행에서 기록됨
나중에 포럼에서 누군가가 이 버그가 python3 환경에 존재하지 않는다고 말하는 것을 발견했습니다. 그래서 python2.7 로깅 구성요소를 업그레이드하려고 했습니다.
셸 코드
pip install --upgrade logging
로깅을 업그레이드한 후에는 이 오류가 더 이상 나타나지 않습니다.

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Scrapy는 WeChat 공개 계정의 기사 크롤링 및 분석을 구현합니다. WeChat은 최근 몇 년 동안 인기 있는 소셜 미디어 애플리케이션이며, 여기서 운영되는 공개 계정도 매우 중요한 역할을 합니다. 우리 모두 알고 있듯이 WeChat 공개 계정은 정보와 지식의 바다입니다. 왜냐하면 각 공개 계정은 기사, 그래픽 메시지 및 기타 정보를 게시할 수 있기 때문입니다. 이 정보는 언론보도, 학술연구 등 다양한 분야에서 폭넓게 활용될 수 있습니다. 그래서 이 글에서는 Scrapy 프레임워크를 사용하여 WeChat 공개 계정 글을 크롤링하고 분석하는 방법을 소개하겠습니다. Scr

Scrapy는 인터넷에서 관련 정보를 빠르고 쉽게 얻을 수 있는 Python 기반 크롤러 프레임워크입니다. 이 기사에서는 Scrapy 사례를 사용하여 LinkedIn에서 회사 정보를 크롤링하는 방법을 자세히 분석합니다. 대상 URL 결정 먼저 대상이 LinkedIn의 회사 정보임을 분명히 해야 합니다. 따라서 LinkedIn 회사 정보 페이지의 URL을 찾아야 합니다. LinkedIn 웹사이트를 열고 검색창에 회사 이름을 입력한 후

Scrapy는 웹사이트에서 데이터를 빠르고 효율적으로 얻을 수 있는 오픈 소스 Python 크롤러 프레임워크입니다. 그러나 많은 웹사이트는 Ajax 비동기 로딩 기술을 사용하므로 Scrapy가 데이터를 직접 얻는 것이 불가능합니다. 이 기사에서는 Ajax 비동기 로딩을 기반으로 한 Scrapy 구현 방법을 소개합니다. 1. Ajax 비동기 로딩 원리 Ajax 비동기 로딩: 전통적인 페이지 로딩 방법에서는 브라우저가 서버에 요청을 보낸 후 서버가 응답을 반환할 때까지 기다려야 다음 단계로 진행하기 전에 전체 페이지를 로드해야 합니다.

Scrapy는 인터넷에서 대량의 데이터를 얻는 데 사용할 수 있는 강력한 Python 크롤러 프레임워크입니다. 그러나 Scrapy를 개발할 때 중복된 URL을 크롤링하는 문제에 자주 직면하게 되는데, 이는 많은 시간과 자원을 낭비하고 효율성에 영향을 미칩니다. 이 기사에서는 중복 URL의 크롤링을 줄이고 Scrapy 크롤러의 효율성을 향상시키는 몇 가지 Scrapy 최적화 기술을 소개합니다. 1. Scrapy 크롤러의 start_urls 및 allowed_domains 속성을 사용하여

Scrapy 크롤러에서 Selenium 및 PhantomJSScrapy 사용 Scrapy는 Python 기반의 뛰어난 웹 크롤러 프레임워크이며 다양한 분야의 데이터 수집 및 처리에 널리 사용되었습니다. 크롤러 구현 시 특정 웹사이트에서 제공하는 콘텐츠를 얻기 위해 브라우저 작업을 시뮬레이션해야 하는 경우가 있습니다. 이 경우 Selenium 및 PhantomJS가 필요합니다. Selenium은 브라우저에서 인간 작업을 시뮬레이션하여 웹 애플리케이션 테스트를 자동화할 수 있습니다.

Scrapy는 인터넷에서 빠르고 유연하게 데이터를 얻는 데 도움이 되는 강력한 Python 크롤러 프레임워크입니다. 실제 크롤링 과정에서 HTML, XML, JSON 등 다양한 데이터 형식을 접하는 경우가 많습니다. 이 기사에서는 Scrapy를 사용하여 세 가지 데이터 형식을 각각 크롤링하는 방법을 소개합니다. 1. HTML 데이터를 크롤링하고 Scrapy 프로젝트를 생성합니다. 먼저 Scrapy 프로젝트를 생성해야 합니다. 명령줄을 열고 다음 명령을 입력하세요: scrapys

현대 인터넷 애플리케이션이 지속적으로 개발되고 복잡해짐에 따라 웹 크롤러는 데이터 수집 및 분석을 위한 중요한 도구가 되었습니다. Python에서 가장 인기 있는 크롤러 프레임워크 중 하나인 Scrapy는 강력한 기능과 사용하기 쉬운 API 인터페이스를 갖추고 있어 개발자가 웹 페이지 데이터를 빠르게 크롤링하고 처리하는 데 도움이 됩니다. 그러나 대규모 크롤링 작업에 직면할 때 단일 Scrapy 크롤러 인스턴스는 하드웨어 리소스에 의해 쉽게 제한되므로 일반적으로 Scrapy를 컨테이너화하여 Docker 컨테이너에 배포해야 합니다.

최근에는 소셜 네트워크 분석에 대한 수요가 증가하고 있습니다. QQ Zone은 중국에서 가장 큰 소셜 네트워크 중 하나이며, 데이터 크롤링 및 분석은 소셜 네트워크 연구에 특히 중요합니다. 이 글에서는 Scrapy 프레임워크를 사용하여 QQ Space 데이터를 크롤링하고 소셜 네트워크 분석을 수행하는 방법을 소개합니다. 1. Scrapy 소개 Scrapy는 Python 기반의 오픈 소스 웹 크롤링 프레임워크로, Spider 메커니즘을 통해 웹사이트 데이터를 빠르고 효율적으로 수집하고 처리하고 저장하는 데 도움이 됩니다. 에스
