머리말
Pandas는 ndarray가 핵심인 Numpy와 유사하게 Numpy를 기반으로 구축된 데이터 분석 패키지입니다. 데이터프레임. Series와 DataFrame은 각각 1차원 시퀀스와 2차원 테이블 구조에 해당합니다. Pandas의 일반적인 import 방법은 다음과 같습니다.
from pandas import Series,DataFrame import pandas as pd
1.1 Pandas 분석 단계
1. 로그 데이터 로드
2. Area_ip 데이터 로드
3. real_ip 요청 횟수를 셉니다. 다음 SQL과 유사합니다.
SELECT inet_aton(l.real_ip), count(*), a.addr FROM log AS l INNER JOIN area_ip AS a ON a.start_ip_num <= inet_aton(l.real_ip) AND a.end_ip_num >= inet_aton(l.real_ip) GROUP BY real_ip ORDER BY count(*) LIMIT 0, 100;
1.2 코드
cat pd_ng_log_stat.py #!/usr/bin/env python #-*- coding: utf-8 -*- from ng_line_parser import NgLineParser import pandas as pd import socket import struct class PDNgLogStat(object): def __init__(self): self.ng_line_parser = NgLineParser() def _log_line_iter(self, pathes): """解析文件中的每一行并生成一个迭代器""" for path in pathes: with open(path, 'r') as f: for index, line in enumerate(f): self.ng_line_parser.parse(line) yield self.ng_line_parser.to_dict() def _ip2num(self, ip): """用于IP转化为数字""" ip_num = -1 try: # 将IP转化成INT/LONG 数字 ip_num = socket.ntohl(struct.unpack("I",socket.inet_aton(str(ip)))[0]) except: pass finally: return ip_num def _get_addr_by_ip(self, ip): """通过给的IP获得地址""" ip_num = self._ip2num(ip) try: addr_df = self.ip_addr_df[(self.ip_addr_df.ip_start_num <= ip_num) & (ip_num <= self.ip_addr_df.ip_end_num)] addr = addr_df.at[addr_df.index.tolist()[0], 'addr'] return addr except: return None def load_data(self, path): """通过给的文件路径加载数据生成 DataFrame""" self.df = pd.DataFrame(self._log_line_iter(path)) def uv_real_ip(self, top = 100): """统计cdn ip量""" group_by_cols = ['real_ip'] # 需要分组的列,只计算和显示该列 # 直接统计次数 url_req_grp = self.df[group_by_cols].groupby( self.df['real_ip']) return url_req_grp.agg(['count'])['real_ip'].nlargest(top, 'count') def uv_real_ip_addr(self, top = 100): """统计real ip 地址量""" cnt_df = self.uv_real_ip(top) # 添加 ip 地址 列 cnt_df.insert(len(cnt_df.columns), 'addr', cnt_df.index.map(self._get_addr_by_ip)) return cnt_df def load_ip_addr(self, path): """加载IP""" cols = ['id', 'ip_start_num', 'ip_end_num', 'ip_start', 'ip_end', 'addr', 'operator'] self.ip_addr_df = pd.read_csv(path, sep='\t', names=cols, index_col='id') return self.ip_addr_df def main(): file_pathes = ['www.ttmark.com.access.log'] pd_ng_log_stat = PDNgLogStat() pd_ng_log_stat.load_data(file_pathes) # 加载 ip 地址 area_ip_path = 'area_ip.csv' pd_ng_log_stat.load_ip_addr(area_ip_path) # 统计 用户真实 IP 访问量 和 地址 print pd_ng_log_stat.uv_real_ip_addr() if __name__ == '__main__': main()
운영통계 및 출력결과
python pd_ng_log_stat.py count addr real_ip 60.191.123.80 101013 浙江省杭州市 - 32691 None 218.30.118.79 22523 北京市 ...... 136.243.152.18 889 德国 157.55.39.219 889 美国 66.249.65.170 888 美国 [100 rows x 2 columns]
요약
위 글의 내용은 모두의 공부나 업무에 도움이 되셨으면 좋겠습니다. 질문이 있으시면 메시지를 남겨서 소통하실 수 있습니다.
Python 데이터 분석을 위한 실제 IP 요청 Pandas에 대한 자세한 설명 및 관련 기사를 보려면 PHP 중국어 웹사이트를 주목하세요!
관련 기사:
Pandas를 사용하여 Python을 사용하여 CSV 파일을 읽고 MySQL에 쓰는 방법