Mysql 관계형 데이터베이스 관리 시스템
MySQL은 스웨덴 MySQL AB 회사에서 개발한 오픈 소스 소규모 관계형 데이터베이스 관리 시스템입니다. MySQL은 인터넷상의 중소규모 웹사이트에서 널리 사용되고 있습니다. 작은 크기, 빠른 속도, 낮은 총 소유 비용, 특히 오픈 소스의 특성으로 인해 많은 중소 웹 사이트에서는 웹 사이트 총 소유 비용을 줄이기 위해 MySQL을 웹 사이트 데이터베이스로 선택합니다.
이 글은 주로 MYSQL을 사용하여 10분마다 그룹 통계를 구현하는 방법을 소개합니다. 이 글은 자세한 샘플 코드를 제공하므로 모든 사람에게 도움이 될 것입니다. 특정 참조 값이 있습니다. 도움이 필요한 친구는 아래를 살펴볼 수 있습니다.
서문
이 글의 내용은 주로 MYSQL의 10분 단위 그룹 통계 구현 방법을 소개하고 있으며, 하루 내 사용자 로그인 및 작업 현황에 대한 분포도를 그리면, 이전에는 "저장 프로시저"를 사용하는 방법만 알고 있었습니다(비록 실행 속도는 빠르지만 실제로는 너무 유연하지 않습니다). 나중에는 유사한 구현을 유연하게 수행하기 위해 더 발전된 "그룹별" 방법을 사용하는 방법을 배웠습니다. 기능.
텍스트:
-- time_str '2016-11-20 04:31:11' -- date_str 20161120 select concat(left(date_format(time_str, '%y-%m-%d %h:%i'),15),'0') as time_flag, count(*) as count from `security`.`cmd_info` where `date_str`=20161120 group by time_flag order by time_flag; -- 127 rows select round(unix_timestamp(time_str)/(10 * 60)) as timekey, count(*) from `security`.`cmd_info` where `date_str`=20161120 group by timekey order by timekey; -- 126 rows -- 以上2个SQL语句的思路类似——使用「group by」进行区分,但是方法有所不同,前者只能针对10分钟(或1小时)级别,后者可以动态调整间隔大小,两者效率差不多, 可以根据实际情况选用 select concat(date(time_str),' ',hour(time_str),':',round(minute(time_str)/10,0)*10), count(*) from `security`.`cmd_info` where `date_str`=20161120 group by date(time_str), hour(time_str), round(minute(time_str)/10,0)*10; -- 145 rows select concat(date(time_str),' ',hour(time_str),':',floor(minute(time_str)/10)*10), count(*) from `security`.`cmd_info` where `date_str`=20161120 group by date(time_str), hour(time_str), floor(minute(time_str)/10)*10; -- 127 rows (和 date_format 那个等价) select concat(date(time_str),' ',hour(time_str),':',ceil(minute(time_str)/10)*10), count(*) from `security`.`cmd_info` where `date_str`=20161120 group by date(time_str), hour(time_str), ceil(minute(time_str)/10)*10; -- 151 rows
&
DELIMITER // DROP PROCEDURE IF EXISTS `usp_cmd_info`; CREATE PROCEDURE `usp_cmd_info`(IN dates VARCHAR(12)) BEGIN SELECT count(*) from `cmd_info` where `time_str` BETWEEN CONCAT(dates, " 00:00:00") AND CONCAT(dates, " 00:10:00") INTO @count_0; SELECT count(*) from `cmd_info` where `time_str` BETWEEN CONCAT(dates, " 00:10:00") AND CONCAT(dates, " 00:20:00") INTO @count_1; ... SELECT count(*) from `cmd_info` where `time_str` BETWEEN CONCAT(dates, " 23:40:00") AND CONCAT(dates, " 23:50:00") INTO @count_142; SELECT count(*) from `cmd_info` where `time_str` BETWEEN CONCAT(dates, " 23:50:00") AND CONCAT(dates, " 23:59:59") INTO @count_143; select @count_0, @count_1, @count_2, @count_3, @count_4, @count_5, @count_6, @count_7, @count_8, @count_9, @count_10, @count_11, @count_12, @count_13, @count_14, @count_15, @count_16, @count_17, @count_18, @count_19, @count_20, @count_21, @count_22, @count_23, @count_24, @count_25, @count_26, @count_27, @count_28, @count_29, @count_30, @count_31, @count_32, @count_33, @count_34, @count_35, @count_36, @count_37, @count_38, @count_39, @count_40, @count_41, @count_42, @count_43, @count_44, @count_45, @count_46, @count_47, @count_48, @count_49, @count_50, @count_51, @count_52, @count_53, @count_54, @count_55, @count_56, @count_57, @count_58, @count_59, @count_60, @count_61, @count_62, @count_63, @count_64, @count_65, @count_66, @count_67, @count_68, @count_69, @count_70, @count_71, @count_72, @count_73, @count_74, @count_75, @count_76, @count_77, @count_78, @count_79, @count_80, @count_81, @count_82, @count_83, @count_84, @count_85, @count_86, @count_87, @count_88, @count_89, @count_90, @count_91, @count_92, @count_93, @count_94, @count_95, @count_96, @count_97, @count_98, @count_99, @count_100, @count_101, @count_102, @count_103, @count_104, @count_105, @count_106, @count_107, @count_108, @count_109, @count_110, @count_111, @count_112, @count_113, @count_114, @count_115, @count_116, @count_117, @count_118, @count_119, @count_120, @count_121, @count_122, @count_123, @count_124, @count_125, @count_126, @count_127, @count_128, @count_129, @count_130, @count_131, @count_132, @count_133, @count_134, @count_135, @count_136, @count_137, @count_138, @count_139, @count_140, @count_141, @count_142, @count_143; END // DELIMITER ; show PROCEDURE status\G CALL usp_cmd_info("2016-10-20"); 上面的这段MySQL存储过程的语句非常长,不可能用手工输入,可以用下面的这段Python代码按所需的时间间隔自动生成: import datetime today = datetime.date.today() # 或 由给定格式字符串转换成 # today = datetime.datetime.strptime('2016-11-21', '%Y-%m-%d') min_today_time = datetime.datetime.combine(today, datetime.time.min) # 2016-11-21 00:00:00 max_today_time = datetime.datetime.combine(today, datetime.time.max) # 2016-11-21 23:59:59 sql_procedure_arr = [] sql_procedure_arr2 = [] for x in xrange(0, 60*24/5, 1): start_datetime = min_today_time + datetime.timedelta(minutes = 5*x) end_datetime = min_today_time + datetime.timedelta(minutes = 5*(x+1)) # print x, start_datetime.strftime("%Y-%m-%d %H:%M:%S"), end_datetime.strftime("%Y-%m-%d %H:%M:%S") select_str = 'SELECT count(*) from `cmd_info` where `time_str` BETWEEN "{0}" AND "{1}" INTO @count_{2};'.format(start_datetime, end_datetime, x) # print select_str sql_procedure_arr.append(select_str) sql_procedure_arr2.append('@count_{0}'.format(x)) print '\n'.join(sql_procedure_arr) print 'select {0};'.format(', '.join(sql_procedure_arr2))
요약
위는 10분마다 통계를 그룹화하는 MYSQL 구현 방법의 전체 내용입니다. 관련 내용은 PHP 중국어 홈페이지(www.php.cn)를 주목해주세요!