Java java지도 시간 Java 컬렉션 ArrayList 샘플 코드 분석

Java 컬렉션 ArrayList 샘플 코드 분석

Mar 17, 2017 pm 05:19 PM

ArrayList 소개: ArrayList는 동적 배열과 동일하며 용량이 동적으로 증가할 수 있는 배열 대기열이며 AbstractList를 상속하고 List, RandomAccess를 구현합니다. , 복제 가능하고 직렬화 가능한 인터페이스.

특징:

(1) ArrayList는 AbstractList를 상속받아 List를 구현한 배열 큐이며 추가, 삭제, 수정, 순회 등 관련 기능을 제공합니다.

(2) ArrayList는 RandomAccess 인터페이스를 구현하고 랜덤 액세스 기능을 제공합니다. RandomAccess는 Java의 List로 구현되며 List에 대한 빠른 액세스 기능을 제공합니다. 요소 첨자를 통해서도 수행할 수 있습니다.

(3) ArrayList는 Cloneable 인터페이스를 구현하고 clone() 함수를 다루며 복제가 가능합니다.

(4) ArrayList는 직렬화 가능 인터페이스를 구현하며 직렬화되어 네트워크를 통해 전송될 수 있습니다.

(5) ArrayList는 스레드로부터 안전하지 않으며 단일 스레드에서 사용하는 것이 좋습니다.

(6) ArrayList는 ElementData와 Object[] 배열을 사용하여 데이터를 동적으로 저장합니다.

(7) 객체 배열의 초기 크기는 10이고 배열 크기 조정 방법은 newCapacity입니다. = oldCapacity + (oldCapacity >> 1);

ArrayList는 세 가지 순회 방법을 지원합니다:

(1) 반복자를 통한 순회, 즉 Itreator를 통한 순회

Integer value=Iterator iter=list.iterator()(iter.hasNext())
{
    value=(Interger)iter.next()}
로그인 후 복사

(2) 무작위 액세스 모드, 인덱스 값을 통해 모든 요소를 ​​순회

Interger value=size=list.size()fo(i=i<i++)
{
    value=(Integer)list.get(i)}
로그인 후 복사

(3) 루프 순회

Integer value=(Integer inte : list)
{
    value=inte}
로그인 후 복사

세 가지 순회 방법 중 인덱스를 통한 순회가 가장 빠르고, 반복자를 통한 순회가 가장 느립니다.

샘플 프로그램:

public class Hello {

    public static void main(String[] args) {

        ArrayList list = new ArrayList();
        list.add("1");
        list.add("2");
        list.add("3");
        list.add("4");
        list.add(0, "5");
        System.out.println("the first element is: "+ list.get(0));
        list.remove("3");
        System.out.println("Arraylist size=: "+ list.size());
        System.out.println("ArrayList contains 3 is: "+ list.contains(3));
        list.set(1, "10");
        for(Iterator iter = list.iterator(); iter.hasNext(); )
        {
            System.out.println("next is: "+ iter.next());
        }
        String[] arr = (String[])list.toArray(new String[0]);
        for (String str:arr)
            System.out.println("str: "+ str);
        list.clear();
        System.out.println("ArrayList is empty: "+ list.isEmpty());
    }
}
로그인 후 복사

실행 결과:

the first element is: 5
Arraylist size=: 4
ArrayList contains 3 is: false
next is: 5
next is: 10
next is: 2
next is: 4
str: 5
str: 10
str: 2
str: 4
ArrayList is empty: true
로그인 후 복사

ArrayList 소스 코드 분석:

// Arraylist는 AbstractList를 상속하고 List, RandomAccess, Cloneable을 구현합니다. 직렬화 가능 인터페이스

public class ArrayList<E> extends AbstractList<E>
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
    private static final long serialVersionUID = 8683452581122892189L;  //序列化ID
    private static final int DEFAULT_CAPACITY = 10; //初始大小为10,会动态增加
    private static final Object[] EMPTY_ELEMENTDATA = {};//空的数组实例
    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
    transient Object[] elementData; // ArrayList用来存储对象的数组
    private int size;//数组中包含对象的个数
    //ArrayList构造函数,构造初始大小的elementData
    public ArrayList(int initialCapacity)
    {
        if (initialCapacity > 0) {
            this.elementData = new Object[initialCapacity];
        } else if (initialCapacity == 0) {
            this.elementData = EMPTY_ELEMENTDATA;
        } else {
            throw new IllegalArgumentException("Illegal Capacity: "+
                    initialCapacity);
        }
    }
    //构造函数,初始化大小为10的数组
    public ArrayList() {
        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
    }
    //带有Collection的构造函数
    public ArrayList(Collection<? extends E> c) {
        elementData = c.toArray();
        if ((size = elementData.length) != 0) {
            // c.toArray might (incorrectly) not return Object[] (see 6260652)
            if (elementData.getClass() != Object[].class)
                elementData = Arrays.copyOf(elementData, size, Object[].class);
        } else {
            // replace with empty array.
            this.elementData = EMPTY_ELEMENTDATA;
        }
    }
    //当前容量值设置为实际个数
    public void trimToSize() {
        modCount++;
        if (size < elementData.length) {
            elementData = (size == 0)
                    ? EMPTY_ELEMENTDATA
                    : Arrays.copyOf(elementData, size);
        }
    }
    //判断容量,容量不够增加
    public void ensureCapacity(int minCapacity) {
        int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
                // any size if not default element table
                ? 0
                // larger than default for default empty table. It&#39;s already
                // supposed to be at default size.
                : DEFAULT_CAPACITY;

        if (minCapacity > minExpand) {
            ensureExplicitCapacity(minCapacity);
        }
    }
    private void ensureCapacityInternal(int minCapacity) {
        if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
            minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
        }

        ensureExplicitCapacity(minCapacity);
    }

    private void ensureExplicitCapacity(int minCapacity) {
        modCount++;

        // overflow-conscious code
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);
    }
    //最大的容量分配
    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
    private void grow(int minCapacity) {
        // overflow-conscious code
        int oldCapacity = elementData.length;
        int newCapacity = oldCapacity + (oldCapacity >> 1);
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity;
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        // minCapacity is usually close to size, so this is a win:
        elementData = Arrays.copyOf(elementData, newCapacity);
    }

    private static int hugeCapacity(int minCapacity) {
        if (minCapacity < 0) // overflow
            throw new OutOfMemoryError();
        return (minCapacity > MAX_ARRAY_SIZE) ?
                Integer.MAX_VALUE :
                MAX_ARRAY_SIZE;
    }
    //返回ArrayList的大小
    public int size() {
        return size;
    }
    //判断ArrayList是否为空
    public boolean isEmpty() {
        return size == 0;
    }
    //判断是否含有某个对象
    public boolean contains(Object o) {
        return indexOf(o) >= 0;
    }
    //查找对象,返回坐标
    public int indexOf(Object o) {
        if (o == null) {
            for (int i = 0; i < size; i++)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = 0; i < size; i++)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }
    //返回对象相同的最后一个坐标
    public int lastIndexOf(Object o) {
        if (o == null) {
            for (int i = size-1; i >= 0; i--)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = size-1; i >= 0; i--)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }
    //返回一个影子对象克隆
    public Object clone() {
        try {
            ArrayList<?> v = (ArrayList<?>) super.clone();
            v.elementData = Arrays.copyOf(elementData, size);
            v.modCount = 0;
            return v;
        } catch (CloneNotSupportedException e) {
            // this shouldn&#39;t happen, since we are Cloneable
            throw new InternalError(e);
        }
    }
    //返回一个包含所有ArrayList元素的数组
    public Object[] toArray() {
        return Arrays.copyOf(elementData, size);
    }
    //返回泛型对象数组,一般使用这个不是上边那个
    @SuppressWarnings("unchecked")
    public <T> T[] toArray(T[] a) {
        if (a.length < size)
        // Make a new array of a&#39;s runtime type, but my contents:
            return (T[]) Arrays.copyOf(elementData, size, a.getClass());
        System.arraycopy(elementData, 0, a, 0, size);
        if (a.length > size)
            a[size] = null;
        return a;
    }
    //得到指定下标的对象
    @SuppressWarnings("unchecked")
    E elementData(int index) {
        return (E) elementData[index];
    }
    //得到指定下标的对象,并对下标进行判断
    public E get(int index) {
        rangeCheck(index);

        return elementData(index);
    }
    //替换指定下标的对象,会检查下标并返回
    public E set(int index, E element) {
        rangeCheck(index);

        E oldValue = elementData(index);
        elementData[index] = element;
        return oldValue;
    }
    //追加对象
    public boolean add(E e) {
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        elementData[size++] = e;
        return true;
    }
    //在指定的下标后增加对象
    public void add(int index, E element) {
        rangeCheckForAdd(index);

        ensureCapacityInternal(size + 1);  // Increments modCount!!
        System.arraycopy(elementData, index, elementData, index + 1,
                size - index);
        elementData[index] = element;
        size++;
    }
    //删除指定坐标的对象
    public E remove(int index) {
        rangeCheck(index);

        modCount++;
        E oldValue = elementData(index);

        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                    numMoved);
        elementData[--size] = null; // clear to let GC do its work

        return oldValue;
    }
    // 删除ArrayList第一次出现的对象o
    public boolean remove(Object o) {
        if (o == null) {
            for (int index = 0; index < size; index++)
                if (elementData[index] == null) {
                    fastRemove(index);
                    return true;
                }
        } else {
            for (int index = 0; index < size; index++)
                if (o.equals(elementData[index])) {
                    fastRemove(index);
                    return true;
                }
        }
        return false;
    }
    //删除
    private void fastRemove(int index) {
        modCount++;
        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                    numMoved);
        elementData[--size] = null; // clear to let GC do its work
    }
    //清空ArrayList
    public void clear() {
        modCount++;

        // clear to let GC do its work
        for (int i = 0; i < size; i++)
            elementData[i] = null;

        size = 0;
    }
    //将集合C追加到ArrayList中
    public boolean addAll(Collection<? extends E> c) {
        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // Increments modCount
        System.arraycopy(a, 0, elementData, size, numNew);
        size += numNew;
        return numNew != 0;
    }
    //在ArrayList中的某个坐标后追加集合c
    public boolean addAll(int index, Collection<? extends E> c) {
        rangeCheckForAdd(index);

        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // Increments modCount
        int numMoved = size - index;
        if (numMoved > 0)
            System.arraycopy(elementData, index, elementData, index + numNew,
                    numMoved);
        System.arraycopy(a, 0, elementData, index, numNew);
        size += numNew;
        return numNew != 0;
    }
    //删除范围中的对象
    protected void removeRange(int fromIndex, int toIndex) {
        modCount++;
        int numMoved = size - toIndex;
        System.arraycopy(elementData, toIndex, elementData, fromIndex,
                numMoved);

        // clear to let GC do its work
        int newSize = size - (toIndex-fromIndex);
        for (int i = newSize; i < size; i++) {
            elementData[i] = null;
        }
        size = newSize;
    }
    //范围检查
    private void rangeCheck(int index) {
        if (index >= size)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }
    //在添加或者添加所有的时候范围检查
    private void rangeCheckForAdd(int index) {
        if (index > size || index < 0)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }
    private String outOfBoundsMsg(int index) {
        return "Index: "+index+", Size: "+size;
    }
    public boolean removeAll(Collection<?> c) {
        Objects.requireNonNull(c);
        return batchRemove(c, false);
    }
    public boolean retainAll(Collection<?> c) {
        Objects.requireNonNull(c);
        return batchRemove(c, true);
    }
    //删除c中的在ArrayList中存在或者不存在的
    private boolean batchRemove(Collection<?> c, boolean complement) {
        final Object[] elementData = this.elementData;
        int r = 0, w = 0;
        boolean modified = false;
        try {
            for (; r < size; r++)
                if (c.contains(elementData[r]) == complement)
                    elementData[w++] = elementData[r];
        } finally {
            // Preserve behavioral compatibility with AbstractCollection,
            // even if c.contains() throws.
            if (r != size) {
                System.arraycopy(elementData, r,
                        elementData, w,
                        size - r);
                w += size - r;
            }
            if (w != size) {
            // clear to let GC do its work
                for (int i = w; i < size; i++)
                    elementData[i] = null;
                modCount += size - w;
                size = w;
                modified = true;
            }
        }
        return modified;
    }
    //序列化
    private void writeObject(java.io.ObjectOutputStream s)
            throws java.io.IOException{
        // Write out element count, and any hidden stuff
        int expectedModCount = modCount;
        s.defaultWriteObject();

        // Write out size as capacity for behavioural compatibility with clone()
        s.writeInt(size);

        // Write out all elements in the proper order.
        for (int i=0; i<size; i++) {
            s.writeObject(elementData[i]);
        }

        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
    }
    //反序列化
    private void readObject(java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {
        elementData = EMPTY_ELEMENTDATA;
        // Read in size, and any hidden stuff
        s.defaultReadObject();
        // Read in capacity
        s.readInt(); // ignored
        if (size > 0) {
            // be like clone(), allocate array based upon size not capacity
            ensureCapacityInternal(size);
            Object[] a = elementData;
            // Read in all elements in the proper order.
            for (int i=0; i<size; i++) {
                a[i] = s.readObject();
            }
        }
    }

    public ListIterator<E> listIterator(int index) {
        if (index < 0 || index > size)
            throw new IndexOutOfBoundsException("Index: "+index);
        return new ListItr(index);
    }
    public ListIterator<E> listIterator() {
        return new ListItr(0);
    }
    public Iterator<E> iterator() {
        return new Itr();
    }
    private class Itr implements Iterator<E> {
        int cursor;       // index of next element to return
        int lastRet = -1; // index of last element returned; -1 if no such
        int expectedModCount = modCount;

        public boolean hasNext() {
            return cursor != size;
        }

        @SuppressWarnings("unchecked")
        public E next() {
            checkForComodification();
            int i = cursor;
            if (i >= size)
                throw new NoSuchElementException();
            Object[] elementData = ArrayList.this.elementData;
            if (i >= elementData.length)
                throw new ConcurrentModificationException();
            cursor = i + 1;
            return (E) elementData[lastRet = i];
        }

        public void remove() {
            if (lastRet < 0)
                throw new IllegalStateException();
            checkForComodification();

            try {
                ArrayList.this.remove(lastRet);
                cursor = lastRet;
                lastRet = -1;
                expectedModCount = modCount;
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }

        @Override
        @SuppressWarnings("unchecked")
        public void forEachRemaining(Consumer<? super E> consumer) {
            Objects.requireNonNull(consumer);
            final int size = ArrayList.this.size;
            int i = cursor;
            if (i >= size) {
                return;
            }
            final Object[] elementData = ArrayList.this.elementData;
            if (i >= elementData.length) {
                throw new ConcurrentModificationException();
            }
            while (i != size && modCount == expectedModCount) {
                consumer.accept((E) elementData[i++]);
            }
            // update once at end of iteration to reduce heap write traffic
            cursor = i;
            lastRet = i - 1;
            checkForComodification();
        }

        final void checkForComodification() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }
    }
    private class ListItr extends Itr implements ListIterator<E> {
        ListItr(int index) {
            super();
            cursor = index;
        }

        public boolean hasPrevious() {
            return cursor != 0;
        }

        public int nextIndex() {
            return cursor;
        }

        public int previousIndex() {
            return cursor - 1;
        }

        @SuppressWarnings("unchecked")
        public E previous() {
            checkForComodification();
            int i = cursor - 1;
            if (i < 0)
                throw new NoSuchElementException();
            Object[] elementData = ArrayList.this.elementData;
            if (i >= elementData.length)
                throw new ConcurrentModificationException();
            cursor = i;
            return (E) elementData[lastRet = i];
        }

        public void set(E e) {
            if (lastRet < 0)
                throw new IllegalStateException();
            checkForComodification();

            try {
                ArrayList.this.set(lastRet, e);
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }

        public void add(E e) {
            checkForComodification();

            try {
                int i = cursor;
                ArrayList.this.add(i, e);
                cursor = i + 1;
                lastRet = -1;
                expectedModCount = modCount;
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }
    }
    public List<E> subList(int fromIndex, int toIndex) {
        subListRangeCheck(fromIndex, toIndex, size);
        return new SubList(this, 0, fromIndex, toIndex);
    }

    static void subListRangeCheck(int fromIndex, int toIndex, int size) {
        if (fromIndex < 0)
            throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
        if (toIndex > size)
            throw new IndexOutOfBoundsException("toIndex = " + toIndex);
        if (fromIndex > toIndex)
            throw new IllegalArgumentException("fromIndex(" + fromIndex +
                    ") > toIndex(" + toIndex + ")");
    }

    private class SubList extends AbstractList<E> implements RandomAccess {
        private final AbstractList<E> parent;
        private final int parentOffset;
        private final int offset;
        int size;

        SubList(AbstractList<E> parent,
                int offset, int fromIndex, int toIndex) {
            this.parent = parent;
            this.parentOffset = fromIndex;
            this.offset = offset + fromIndex;
            this.size = toIndex - fromIndex;
            this.modCount = ArrayList.this.modCount;
        }

        public E set(int index, E e) {
            rangeCheck(index);
            checkForComodification();
            E oldValue = ArrayList.this.elementData(offset + index);
            ArrayList.this.elementData[offset + index] = e;
            return oldValue;
        }

        public E get(int index) {
            rangeCheck(index);
            checkForComodification();
            return ArrayList.this.elementData(offset + index);
        }

        public int size() {
            checkForComodification();
            return this.size;
        }

        public void add(int index, E e) {
            rangeCheckForAdd(index);
            checkForComodification();
            parent.add(parentOffset + index, e);
            this.modCount = parent.modCount;
            this.size++;
        }

        public E remove(int index) {
            rangeCheck(index);
            checkForComodification();
            E result = parent.remove(parentOffset + index);
            this.modCount = parent.modCount;
            this.size--;
            return result;
        }

        protected void removeRange(int fromIndex, int toIndex) {
            checkForComodification();
            parent.removeRange(parentOffset + fromIndex,
                    parentOffset + toIndex);
            this.modCount = parent.modCount;
            this.size -= toIndex - fromIndex;
        }

        public boolean addAll(Collection<? extends E> c) {
            return addAll(this.size, c);
        }

        public boolean addAll(int index, Collection<? extends E> c) {
            rangeCheckForAdd(index);
            int cSize = c.size();
            if (cSize==0)
                return false;

            checkForComodification();
            parent.addAll(parentOffset + index, c);
            this.modCount = parent.modCount;
            this.size += cSize;
            return true;
        }

        public Iterator<E> iterator() {
            return listIterator();
        }

        public ListIterator<E> listIterator(final int index) {
            checkForComodification();
            rangeCheckForAdd(index);
            final int offset = this.offset;

            return new ListIterator<E>() {
                int cursor = index;
                int lastRet = -1;
                int expectedModCount = ArrayList.this.modCount;

                public boolean hasNext() {
                    return cursor != SubList.this.size;
                }

                @SuppressWarnings("unchecked")
                public E next() {
                    checkForComodification();
                    int i = cursor;
                    if (i >= SubList.this.size)
                        throw new NoSuchElementException();
                    Object[] elementData = ArrayList.this.elementData;
                    if (offset + i >= elementData.length)
                        throw new ConcurrentModificationException();
                    cursor = i + 1;
                    return (E) elementData[offset + (lastRet = i)];
                }

                public boolean hasPrevious() {
                    return cursor != 0;
                }

                @SuppressWarnings("unchecked")
                public E previous() {
                    checkForComodification();
                    int i = cursor - 1;
                    if (i < 0)
                        throw new NoSuchElementException();
                    Object[] elementData = ArrayList.this.elementData;
                    if (offset + i >= elementData.length)
                        throw new ConcurrentModificationException();
                    cursor = i;
                    return (E) elementData[offset + (lastRet = i)];
                }

                @SuppressWarnings("unchecked")
                public void forEachRemaining(Consumer<? super E> consumer) {
                    Objects.requireNonNull(consumer);
                    final int size = SubList.this.size;
                    int i = cursor;
                    if (i >= size) {
                        return;
                    }
                    final Object[] elementData = ArrayList.this.elementData;
                    if (offset + i >= elementData.length) {
                        throw new ConcurrentModificationException();
                    }
                    while (i != size && modCount == expectedModCount) {
                        consumer.accept((E) elementData[offset + (i++)]);
                    }
                    // update once at end of iteration to reduce heap write traffic
                    lastRet = cursor = i;
                    checkForComodification();
                }

                public int nextIndex() {
                    return cursor;
                }

                public int previousIndex() {
                    return cursor - 1;
                }

                public void remove() {
                    if (lastRet < 0)
                        throw new IllegalStateException();
                    checkForComodification();

                    try {
                        SubList.this.remove(lastRet);
                        cursor = lastRet;
                        lastRet = -1;
                        expectedModCount = ArrayList.this.modCount;
                    } catch (IndexOutOfBoundsException ex) {
                        throw new ConcurrentModificationException();
                    }
                }

                public void set(E e) {
                    if (lastRet < 0)
                        throw new IllegalStateException();
                    checkForComodification();

                    try {
                        ArrayList.this.set(offset + lastRet, e);
                    } catch (IndexOutOfBoundsException ex) {
                        throw new ConcurrentModificationException();
                    }
                }

                public void add(E e) {
                    checkForComodification();

                    try {
                        int i = cursor;
                        SubList.this.add(i, e);
                        cursor = i + 1;
                        lastRet = -1;
                        expectedModCount = ArrayList.this.modCount;
                    } catch (IndexOutOfBoundsException ex) {
                        throw new ConcurrentModificationException();
                    }
                }

                final void checkForComodification() {
                    if (expectedModCount != ArrayList.this.modCount)
                        throw new ConcurrentModificationException();
                }
            };
        }

        public List<E> subList(int fromIndex, int toIndex) {
            subListRangeCheck(fromIndex, toIndex, size);
            return new SubList(this, offset, fromIndex, toIndex);
        }

        private void rangeCheck(int index) {
            if (index < 0 || index >= this.size)
                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        }

        private void rangeCheckForAdd(int index) {
            if (index < 0 || index > this.size)
                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        }

        private String outOfBoundsMsg(int index) {
            return "Index: "+index+", Size: "+this.size;
        }

        private void checkForComodification() {
            if (ArrayList.this.modCount != this.modCount)
                throw new ConcurrentModificationException();
        }

        public Spliterator<E> spliterator() {
            checkForComodification();
            return new ArrayListSpliterator<E>(ArrayList.this, offset,
                    offset + this.size, this.modCount);
        }
    }

    @Override
    public void forEach(Consumer<? super E> action) {
        Objects.requireNonNull(action);
        final int expectedModCount = modCount;
        @SuppressWarnings("unchecked")
        final E[] elementData = (E[]) this.elementData;
        final int size = this.size;
        for (int i=0; modCount == expectedModCount && i < size; i++) {
            action.accept(elementData[i]);
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
    }
    @Override
    public Spliterator<E> spliterator() {
        return new ArrayListSpliterator<>(this, 0, -1, 0);
    }

    /** Index-based split-by-two, lazily initialized Spliterator */
    static final class ArrayListSpliterator<E> implements Spliterator<E> {

        private final ArrayList<E> list;
        private int index; // current index, modified on advance/split
        private int fence; // -1 until used; then one past last index
        private int expectedModCount; // initialized when fence set

        /** Create new spliterator covering the given  range */
        ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
                             int expectedModCount) {
            this.list = list; // OK if null unless traversed
            this.index = origin;
            this.fence = fence;
            this.expectedModCount = expectedModCount;
        }

        private int getFence() { // initialize fence to size on first use
            int hi; // (a specialized variant appears in method forEach)
            ArrayList<E> lst;
            if ((hi = fence) < 0) {
                if ((lst = list) == null)
                    hi = fence = 0;
                else {
                    expectedModCount = lst.modCount;
                    hi = fence = lst.size;
                }
            }
            return hi;
        }

        public ArrayListSpliterator<E> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid) ? null : // pide range in half unless too small
                    new ArrayListSpliterator<E>(list, lo, index = mid,
                            expectedModCount);
        }

        public boolean tryAdvance(Consumer<? super E> action) {
            if (action == null)
                throw new NullPointerException();
            int hi = getFence(), i = index;
            if (i < hi) {
                index = i + 1;
                @SuppressWarnings("unchecked") E e = (E)list.elementData[i];
                action.accept(e);
                if (list.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                return true;
            }
            return false;
        }

        public void forEachRemaining(Consumer<? super E> action) {
            int i, hi, mc; // hoist accesses and checks from loop
            ArrayList<E> lst; Object[] a;
            if (action == null)
                throw new NullPointerException();
            if ((lst = list) != null && (a = lst.elementData) != null) {
                if ((hi = fence) < 0) {
                    mc = lst.modCount;
                    hi = lst.size;
                }
                else
                    mc = expectedModCount;
                if ((i = index) >= 0 && (index = hi) <= a.length) {
                    for (; i < hi; ++i) {
                        @SuppressWarnings("unchecked") E e = (E) a[i];
                        action.accept(e);
                    }
                    if (lst.modCount == mc)
                        return;
                }
            }
            throw new ConcurrentModificationException();
        }

        public long estimateSize() {
            return (long) (getFence() - index);
        }

        public int characteristics() {
            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
        }
    }

    @Override
    public boolean removeIf(Predicate<? super E> filter) {
        Objects.requireNonNull(filter);
        // figure out which elements are to be removed
        // any exception thrown from the filter predicate at this stage
        // will leave the collection unmodified
        int removeCount = 0;
        final BitSet removeSet = new BitSet(size);
        final int expectedModCount = modCount;
        final int size = this.size;
        for (int i=0; modCount == expectedModCount && i < size; i++) {
            @SuppressWarnings("unchecked")
            final E element = (E) elementData[i];
            if (filter.test(element)) {
                removeSet.set(i);
                removeCount++;
            }
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
        // shift surviving elements left over the spaces left by removed elements
        final boolean anyToRemove = removeCount > 0;
        if (anyToRemove) {
            final int newSize = size - removeCount;
            for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
                i = removeSet.nextClearBit(i);
                elementData[j] = elementData[i];
            }
            for (int k=newSize; k < size; k++) {
                elementData[k] = null;  // Let gc do its work
            }
            this.size = newSize;
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
            modCount++;
        }

        return anyToRemove;
    }

    @Override
    @SuppressWarnings("unchecked")
    public void replaceAll(UnaryOperator<E> operator) {
        Objects.requireNonNull(operator);
        final int expectedModCount = modCount;
        final int size = this.size;
        for (int i=0; modCount == expectedModCount && i < size; i++) {
            elementData[i] = operator.apply((E) elementData[i]);
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
        modCount++;
    }

    @Override
    @SuppressWarnings("unchecked")
    public void sort(Comparator<? super E> c) {
        final int expectedModCount = modCount;
        Arrays.sort((E[]) elementData, 0, size, c);
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
        modCount++;
    }
}
로그인 후 복사

관련 기사:

C#을 사용하여 데이터 구조를 설명하는 방법에 대한 자세한 소개 3: ArrayList 그래픽 코드

js는 예제 코드로 ArrayList 함수를 구현합니다

C# copycat ArrayList를 구현하는 PHP 메서드

위 내용은 Java 컬렉션 ArrayList 샘플 코드 분석의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

자바의 완전수 자바의 완전수 Aug 30, 2024 pm 04:28 PM

Java의 완전수 가이드. 여기서는 정의, Java에서 완전 숫자를 확인하는 방법, 코드 구현 예제에 대해 논의합니다.

자바의 웨카 자바의 웨카 Aug 30, 2024 pm 04:28 PM

Java의 Weka 가이드. 여기에서는 소개, weka java 사용 방법, 플랫폼 유형 및 장점을 예제와 함께 설명합니다.

Java의 스미스 번호 Java의 스미스 번호 Aug 30, 2024 pm 04:28 PM

Java의 Smith Number 가이드. 여기서는 정의, Java에서 스미스 번호를 확인하는 방법에 대해 논의합니다. 코드 구현의 예.

Java Spring 인터뷰 질문 Java Spring 인터뷰 질문 Aug 30, 2024 pm 04:29 PM

이 기사에서는 가장 많이 묻는 Java Spring 면접 질문과 자세한 답변을 보관했습니다. 그래야 면접에 합격할 수 있습니다.

Java 8 Stream foreach에서 나누거나 돌아 오시겠습니까? Java 8 Stream foreach에서 나누거나 돌아 오시겠습니까? Feb 07, 2025 pm 12:09 PM

Java 8은 스트림 API를 소개하여 데이터 컬렉션을 처리하는 강력하고 표현적인 방법을 제공합니다. 그러나 스트림을 사용할 때 일반적인 질문은 다음과 같은 것입니다. 기존 루프는 조기 중단 또는 반환을 허용하지만 스트림의 Foreach 메소드는이 방법을 직접 지원하지 않습니다. 이 기사는 이유를 설명하고 스트림 처리 시스템에서 조기 종료를 구현하기위한 대체 방법을 탐색합니다. 추가 읽기 : Java Stream API 개선 스트림 foreach를 이해하십시오 Foreach 메소드는 스트림의 각 요소에서 하나의 작업을 수행하는 터미널 작동입니다. 디자인 의도입니다

Java의 날짜까지의 타임스탬프 Java의 날짜까지의 타임스탬프 Aug 30, 2024 pm 04:28 PM

Java의 TimeStamp to Date 안내. 여기서는 소개와 예제와 함께 Java에서 타임스탬프를 날짜로 변환하는 방법에 대해서도 설명합니다.

캡슐의 양을 찾기위한 Java 프로그램 캡슐의 양을 찾기위한 Java 프로그램 Feb 07, 2025 am 11:37 AM

캡슐은 3 차원 기하학적 그림이며, 양쪽 끝에 실린더와 반구로 구성됩니다. 캡슐의 부피는 실린더의 부피와 양쪽 끝에 반구의 부피를 첨가하여 계산할 수 있습니다. 이 튜토리얼은 다른 방법을 사용하여 Java에서 주어진 캡슐의 부피를 계산하는 방법에 대해 논의합니다. 캡슐 볼륨 공식 캡슐 볼륨에 대한 공식은 다음과 같습니다. 캡슐 부피 = 원통형 볼륨 2 반구 볼륨 안에, R : 반구의 반경. H : 실린더의 높이 (반구 제외). 예 1 입력하다 반경 = 5 단위 높이 = 10 단위 산출 볼륨 = 1570.8 입방 단위 설명하다 공식을 사용하여 볼륨 계산 : 부피 = π × r2 × h (4

미래를 창조하세요: 완전 초보자를 위한 Java 프로그래밍 미래를 창조하세요: 완전 초보자를 위한 Java 프로그래밍 Oct 13, 2024 pm 01:32 PM

Java는 초보자와 숙련된 개발자 모두가 배울 수 있는 인기 있는 프로그래밍 언어입니다. 이 튜토리얼은 기본 개념부터 시작하여 고급 주제를 통해 진행됩니다. Java Development Kit를 설치한 후 간단한 "Hello, World!" 프로그램을 작성하여 프로그래밍을 연습할 수 있습니다. 코드를 이해한 후 명령 프롬프트를 사용하여 프로그램을 컴파일하고 실행하면 "Hello, World!"가 콘솔에 출력됩니다. Java를 배우면 프로그래밍 여정이 시작되고, 숙달이 깊어짐에 따라 더 복잡한 애플리케이션을 만들 수 있습니다.

See all articles