목차
소개
Executor와 Future
submit을 사용하여 스레드 풀/프로세스 풀 운영
map/wait를 사용하여 스레드 풀/프로세스 풀 작업
submit 작업 사용 검토
map 사용
세 번째 옵션은 wait입니다
생각하는 질문
백엔드 개발 파이썬 튜토리얼 Python 동시 프로그래밍 스레드 풀/프로세스 풀

Python 동시 프로그래밍 스레드 풀/프로세스 풀

Mar 18, 2017 am 11:37 AM
python

소개

Python 표준 라이브러리는 해당 멀티스레딩/멀티프로세스 코드를 작성하기 위한 스레딩 및 멀티프로세싱 모듈을 제공합니다. 그러나 프로젝트가 특정 규모에 도달하면 프로세스의 생성/파괴가 자주 발생합니다. 스레드는 매우 리소스 집약적입니다. 예, 지금은 시간을 위해 공간을 교환하기 위해 자체 스레드 풀/프로세스 풀을 작성해야 합니다. 그러나 Python 3.2부터 표준 라이브러리는 ThreadPoolExecutor 및 ProcessPoolExecutor라는 두 가지 클래스를 제공하는 concurrent.futures 모듈을 제공하여 스레딩 및 다중 처리의 추가 추상화를 실현합니다. 스레드 풀/프로세스 풀 작성을 직접 지원합니다.

Executor와 Future

concurrent.futures 모듈은 Executor를 기반으로 하며 추상 클래스이므로 직접 사용할 수 없습니다. 그러나 이 클래스가 제공하는 두 하위 클래스 ThreadPoolExecutor 및 ProcessPoolExecutor는 이름에서 알 수 있듯이 각각 스레드 풀 및 프로세스 풀 코드를 생성하는 데 사용됩니다. 해당 작업을 스레드 풀/프로세스 풀에 직접 넣을 수 있으며, 교착 상태를 걱정하기 위해 대기열을 유지할 필요가 없습니다. 스레드 풀/프로세스 풀이 자동으로 이를 예약합니다.

FutureJava와 nodejs 프로그래밍 경험이 있는 친구들이라면 이 개념이 익숙할 거라 믿습니다. 미래에 완성되는 작업으로 이해하시면 됩니다. 이는 비동기 프로그래밍의 기본입니다. 예를 들어 queue.get을 작동하면 결과가 반환되기를 기다리기 전에 차단이 발생하고 CPU는 다른 작업을 수행할 수 없습니다. Future는 대기 기간 동안 작업을 완료하는 데 도움이 됩니다. Python의 비동기 IO에 대해서는 이 기사를 읽은 후 내 Python 동시 프로그래밍 코루틴/비동기 IO를 참조할 수 있습니다.

p.s: 여전히 Python2.x를 사용하고 있다면 futures 모듈을 먼저 설치하세요.

pip install futures
로그인 후 복사

submit을 사용하여 스레드 풀/프로세스 풀 운영

먼저 다음 코드를 통해 스레드 풀의 개념을 이해해 봅시다

# example1.py
from concurrent.futures import ThreadPoolExecutor
import time
def return_future_result(message):
    time.sleep(2)
    return message
pool = ThreadPoolExecutor(max_workers=2)  # 创建一个最大可容纳2个task的线程池
future1 = pool.submit(return_future_result, ("hello"))  # 往线程池里面加入一个task
future2 = pool.submit(return_future_result, ("world"))  # 往线程池里面加入一个task
print(future1.done())  # 判断task1是否结束
time.sleep(3)
print(future2.done())  # 判断task2是否结束
print(future1.result())  # 查看task1返回的结果
print(future2.result())  # 查看task2返回的结果
로그인 후 복사

다음 코드를 사용하겠습니다. 스레드 풀의 개념을 이해하기 위해 분석해 보겠습니다. submit 메소드를 사용하여 스레드 풀에 작업을 추가하고 submit은 Future 객체를 반환합니다. Future 객체는 간단히 미래에 완료되는 작업으로 이해될 수 있습니다. 첫 번째 print 문에서는 메인 스레드를 일시 중지하기 위해 time.sleep(3)을 사용했기 때문에 time.sleep(2) 때문에 future1이 완료되지 않았음이 분명합니다. 따라서 두 번째 print 문에 관해서는 다음과 같습니다. 스레드 풀 여기의 모든 작업이 완료되었습니다.

ziwenxie :: ~ » python example1.py
False
True
hello
world
# 在上述程序执行的过程中,通过ps命令我们可以看到三个线程同时在后台运行
ziwenxie :: ~ » ps -eLf | grep python
ziwenxie      8361  7557  8361  3    3 19:45 pts/0    00:00:00 python example1.py
ziwenxie      8361  7557  8362  0    3 19:45 pts/0    00:00:00 python example1.py
ziwenxie      8361  7557  8363  0    3 19:45 pts/0    00:00:00 python example1.py
로그인 후 복사

위 코드를 프로세스 풀 형식으로 다시 작성할 수도 있습니다. API와 스레드 풀은 완전히 동일하므로 장황하게 설명하지 않겠습니다.

# example2.py
from concurrent.futures import ProcessPoolExecutor
import time
def return_future_result(message):
    time.sleep(2)
    return message
pool = ProcessPoolExecutor(max_workers=2)
future1 = pool.submit(return_future_result, ("hello"))
future2 = pool.submit(return_future_result, ("world"))
print(future1.done())
time.sleep(3)
print(future2.done())
print(future1.result())
print(future2.result())
로그인 후 복사

실행 결과는 다음과 같습니다

ziwenxie :: ~ » python example2.py
False
True
hello
world
ziwenxie :: ~ » ps -eLf | grep python
ziwenxie      8560  7557  8560  3    3 19:53 pts/0    00:00:00 python example2.py
ziwenxie      8560  7557  8563  0    3 19:53 pts/0    00:00:00 python example2.py
ziwenxie      8560  7557  8564  0    3 19:53 pts/0    00:00:00 python example2.py
ziwenxie      8561  8560  8561  0    1 19:53 pts/0    00:00:00 python example2.py
ziwenxie      8562  8560  8562  0    1 19:53 pts/0    00:00:00 python example2.py
로그인 후 복사

map/wait를 사용하여 스레드 풀/프로세스 풀 작업

Executor에서는 submit 외에도 map 메소드를 제공합니다. 및 내장 map의 사용법은 비슷합니다. 두 가지 예를 통해 두 가지의 차이점을 비교해 보겠습니다.

submit 작업 사용 검토

# example3.py
import concurrent.futures
import urllib.request
URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/']
def load_url(url, timeout):
    with urllib.request.urlopen(url, timeout=timeout) as conn:
        return conn.read()
# We can use a with statement to ensure threads are cleaned up promptly
with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
    # Start the load operations and mark each future with its URL
    future_to_url = {executor.submit(load_url, url, 60): url for url in URLS}
    for future in concurrent.futures.as_completed(future_to_url):
        url = future_to_url[future]
        try:
            data = future.result()
        except Exception as exc:
            print('%r generated an exception: %s' % (url, exc))
        else:
            print('%r page is %d bytes' % (url, len(data)))
로그인 후 복사

실행 결과에서 알 수 있듯이 as_completed가 URLS 목록 요소 순서대로 반환되지 않습니다.

ziwenxie :: ~ » python example3.py
'http://example.com/' page is 1270 byte
'https://api.github.com/' page is 2039 bytes
'http://httpbin.org' page is 12150 bytes
로그인 후 복사

map 사용

# example4.py
import concurrent.futures
import urllib.request
URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/']
def load_url(url):
    with urllib.request.urlopen(url, timeout=60) as conn:
        return conn.read()
# We can use a with statement to ensure threads are cleaned up promptly
with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
    for url, data in zip(URLS, executor.map(load_url, URLS)):
        print('%r page is %d bytes' % (url, len(data)))
로그인 후 복사

실행 결과에서 알 수 있듯이 map은 URLS 목록의 순서대로 요소를 반환하며 작성된 코드가 더 간결해졌습니다. 그리고 직관적입니다. 귀하의 특정한 필요에 따라 어느 하나를 선택할 수 있습니다.

ziwenxie :: ~ » python example4.py
'http://httpbin.org' page is 12150 bytes
'http://example.com/' page is 1270 bytes
'https://api.github.com/' page is 2039 bytes
로그인 후 복사

세 번째 옵션은 wait입니다

wait 메소드는 튜플을 두 개 포함하며, 하나는 완료되고 다른 하나는 완료되지 않습니다. 대기 방법을 사용하면 더 많은 자유를 얻을 수 있다는 것입니다. FIRST_COMPLETED, FIRST_EXCEPTION 및 ALL_COMPLETE의 세 가지 매개변수를 받습니다.

다음 예시를 통해 세 매개변수의 차이점을 살펴보겠습니다.

from concurrent.futures import ThreadPoolExecutor, wait, as_completed
from time import sleep
from random import randint
def return_after_random_secs(num):
    sleep(randint(1, 5))
    return "Return of {}".format(num)
pool = ThreadPoolExecutor(5)
futures = []
for x in range(5):
    futures.append(pool.submit(return_after_random_secs, x))
print(wait(futures))
# print(wait(futures, timeout=None, return_when='FIRST_COMPLETED'))
로그인 후 복사

기본값인 ALL_COMPLETED를 사용하면 스레드 풀의 모든 작업이 완료될 때까지 프로그램이 차단됩니다.

ziwenxie :: ~ » python example5.py
DoneAndNotDoneFutures(done={
<Future at 0x7f0b06c9bc88 state=finished returned str>,
<Future at 0x7f0b06cbaa90 state=finished returned str>,
<Future at 0x7f0b06373898 state=finished returned str>,
<Future at 0x7f0b06352ba8 state=finished returned str>,
<Future at 0x7f0b06373b00 state=finished returned str>}, not_done=set())
로그인 후 복사

FIRST_COMPLETED 매개변수를 사용하면 프로그램은 스레드 풀의 모든 작업이 완료될 때까지 기다리지 않습니다.

ziwenxie :: ~ » python example5.py
DoneAndNotDoneFutures(done={
<Future at 0x7f84109edb00 state=finished returned str>,
<Future at 0x7f840e2e9320 state=finished returned str>,
<Future at 0x7f840f25ccc0 state=finished returned str>},
not_done={<Future at 0x7f840e2e9ba8 state=running>,
<Future at 0x7f840e2e9940 state=running>})
로그인 후 복사

생각하는 질문

multiprocessing.pool(ThreadPool)과 ProcessPollExecutor(ThreadPoolExecutor) 사이의 실행 효율성 격차를 비교하는 작은 프로그램을 작성하고 위에서 언급한 Future를 기반으로 왜 이런 일이 발생하는지 생각해 보세요. 결과.

위 내용은 Python 동시 프로그래밍 스레드 풀/프로세스 풀의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 채팅 명령 및 사용 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

파이썬 : 게임, Guis 등 파이썬 : 게임, Guis 등 Apr 13, 2025 am 12:14 AM

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

PHP 및 Python : 두 가지 인기있는 프로그래밍 언어를 비교합니다 PHP 및 Python : 두 가지 인기있는 프로그래밍 언어를 비교합니다 Apr 14, 2025 am 12:13 AM

PHP와 Python은 각각 고유 한 장점이 있으며 프로젝트 요구 사항에 따라 선택합니다. 1.PHP는 웹 개발, 특히 웹 사이트의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 간결한 구문을 가진 데이터 과학, 기계 학습 및 인공 지능에 적합하며 초보자에게 적합합니다.

Debian Readdir가 다른 도구와 통합하는 방법 Debian Readdir가 다른 도구와 통합하는 방법 Apr 13, 2025 am 09:42 AM

데비안 시스템의 readdir 함수는 디렉토리 컨텐츠를 읽는 데 사용되는 시스템 호출이며 종종 C 프로그래밍에 사용됩니다. 이 기사에서는 ReadDir를 다른 도구와 통합하여 기능을 향상시키는 방법을 설명합니다. 방법 1 : C 언어 프로그램을 파이프 라인과 결합하고 먼저 C 프로그램을 작성하여 readDir 함수를 호출하고 결과를 출력하십시오.#포함#포함#포함#포함#includinTmain (intargc, char*argv []) {dir*dir; structdirent*entry; if (argc! = 2) {

파이썬과 시간 : 공부 시간을 최대한 활용 파이썬과 시간 : 공부 시간을 최대한 활용 Apr 14, 2025 am 12:02 AM

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

NGINX SSL 인증서 업데이트 Debian Tutorial NGINX SSL 인증서 업데이트 Debian Tutorial Apr 13, 2025 am 07:21 AM

이 기사에서는 Debian 시스템에서 NginxSSL 인증서를 업데이트하는 방법에 대해 안내합니다. 1 단계 : CertBot을 먼저 설치하십시오. 시스템에 CERTBOT 및 PYTHON3-CERTBOT-NGINX 패키지가 설치되어 있는지 확인하십시오. 설치되지 않은 경우 다음 명령을 실행하십시오. sudoapt-getupdatesudoapt-getinstallcertbotpython3-certbot-nginx 2 단계 : 인증서 획득 및 구성 rectbot 명령을 사용하여 nginx를 획득하고 nginx를 구성하십시오.

Debian OpenSSL에서 HTTPS 서버를 구성하는 방법 Debian OpenSSL에서 HTTPS 서버를 구성하는 방법 Apr 13, 2025 am 11:03 AM

데비안 시스템에서 HTTPS 서버를 구성하려면 필요한 소프트웨어 설치, SSL 인증서 생성 및 SSL 인증서를 사용하기 위해 웹 서버 (예 : Apache 또는 Nginx)를 구성하는 등 여러 단계가 포함됩니다. 다음은 Apacheweb 서버를 사용하고 있다고 가정하는 기본 안내서입니다. 1. 필요한 소프트웨어를 먼저 설치하고 시스템이 최신 상태인지 확인하고 Apache 및 OpenSSL을 설치하십시오 : Sudoaptupdatesudoaptupgradesudoaptinsta

데비안에 대한 Gitlab의 플러그인 개발 안내서 데비안에 대한 Gitlab의 플러그인 개발 안내서 Apr 13, 2025 am 08:24 AM

데비안에서 gitlab 플러그인을 개발하려면 몇 가지 특정 단계와 지식이 필요합니다. 다음은이 과정을 시작하는 데 도움이되는 기본 안내서입니다. Gitlab을 먼저 설치하려면 Debian 시스템에 Gitlab을 설치해야합니다. Gitlab의 공식 설치 매뉴얼을 참조 할 수 있습니다. API 액세스 토큰을 얻으십시오 API 통합을 수행하기 전에 Gitlab의 API 액세스 토큰을 먼저 가져와야합니다. Gitlab 대시 보드를 열고 사용자 설정에서 "AccessTokens"옵션을 찾은 다음 새 액세스 토큰을 생성하십시오. 생성됩니다

Apache는 어떤 서비스입니까? Apache는 어떤 서비스입니까? Apr 13, 2025 pm 12:06 PM

아파치는 인터넷 뒤의 영웅입니다. 웹 서버 일뿐 만 아니라 큰 트래픽을 지원하고 동적 콘텐츠를 제공하는 강력한 플랫폼이기도합니다. 모듈 식 설계를 통해 매우 높은 유연성을 제공하여 필요에 따라 다양한 기능을 확장 할 수 있습니다. 그러나 Modularity는 또한 신중한 관리가 필요한 구성 및 성능 문제를 제시합니다. Apache는 사용자 정의가 필요한 서버 시나리오에 적합하고 복잡한 요구를 충족시킵니다.

See all articles