Python 동시 프로그래밍 스레드 풀/프로세스 풀
소개
Python 표준 라이브러리는 해당 멀티스레딩/멀티프로세스 코드를 작성하기 위한 스레딩 및 멀티프로세싱 모듈을 제공합니다. 그러나 프로젝트가 특정 규모에 도달하면 프로세스의 생성/파괴가 자주 발생합니다. 스레드는 매우 리소스 집약적입니다. 예, 지금은 시간을 위해 공간을 교환하기 위해 자체 스레드 풀/프로세스 풀을 작성해야 합니다. 그러나 Python 3.2부터 표준 라이브러리는 ThreadPoolExecutor 및 ProcessPoolExecutor라는 두 가지 클래스를 제공하는 concurrent.futures 모듈을 제공하여 스레딩 및 다중 처리의 추가 추상화를 실현합니다. 스레드 풀/프로세스 풀 작성을 직접 지원합니다.
Executor와 Future
concurrent.futures 모듈은 Executor를 기반으로 하며 추상 클래스이므로 직접 사용할 수 없습니다. 그러나 이 클래스가 제공하는 두 하위 클래스 ThreadPoolExecutor 및 ProcessPoolExecutor는 이름에서 알 수 있듯이 각각 스레드 풀 및 프로세스 풀 코드를 생성하는 데 사용됩니다. 해당 작업을 스레드 풀/프로세스 풀에 직접 넣을 수 있으며, 교착 상태를 걱정하기 위해 대기열을 유지할 필요가 없습니다. 스레드 풀/프로세스 풀이 자동으로 이를 예약합니다.
FutureJava와 nodejs 프로그래밍 경험이 있는 친구들이라면 이 개념이 익숙할 거라 믿습니다. 미래에 완성되는 작업으로 이해하시면 됩니다. 이는 비동기 프로그래밍의 기본입니다. 예를 들어 queue.get을 작동하면 결과가 반환되기를 기다리기 전에 차단이 발생하고 CPU는 다른 작업을 수행할 수 없습니다. Future는 대기 기간 동안 작업을 완료하는 데 도움이 됩니다. Python의 비동기 IO에 대해서는 이 기사를 읽은 후 내 Python 동시 프로그래밍 코루틴/비동기 IO를 참조할 수 있습니다.
p.s: 여전히 Python2.x를 사용하고 있다면 futures 모듈을 먼저 설치하세요.
pip install futures
submit을 사용하여 스레드 풀/프로세스 풀 운영
먼저 다음 코드를 통해 스레드 풀의 개념을 이해해 봅시다
# example1.py from concurrent.futures import ThreadPoolExecutor import time def return_future_result(message): time.sleep(2) return message pool = ThreadPoolExecutor(max_workers=2) # 创建一个最大可容纳2个task的线程池 future1 = pool.submit(return_future_result, ("hello")) # 往线程池里面加入一个task future2 = pool.submit(return_future_result, ("world")) # 往线程池里面加入一个task print(future1.done()) # 判断task1是否结束 time.sleep(3) print(future2.done()) # 判断task2是否结束 print(future1.result()) # 查看task1返回的结果 print(future2.result()) # 查看task2返回的结果
다음 코드를 사용하겠습니다. 스레드 풀의 개념을 이해하기 위해 분석해 보겠습니다. submit 메소드를 사용하여 스레드 풀에 작업을 추가하고 submit은 Future 객체를 반환합니다. Future 객체는 간단히 미래에 완료되는 작업으로 이해될 수 있습니다. 첫 번째 print 문에서는 메인 스레드를 일시 중지하기 위해 time.sleep(3)을 사용했기 때문에 time.sleep(2) 때문에 future1이 완료되지 않았음이 분명합니다. 따라서 두 번째 print 문에 관해서는 다음과 같습니다. 스레드 풀 여기의 모든 작업이 완료되었습니다.
ziwenxie :: ~ » python example1.py False True hello world # 在上述程序执行的过程中,通过ps命令我们可以看到三个线程同时在后台运行 ziwenxie :: ~ » ps -eLf | grep python ziwenxie 8361 7557 8361 3 3 19:45 pts/0 00:00:00 python example1.py ziwenxie 8361 7557 8362 0 3 19:45 pts/0 00:00:00 python example1.py ziwenxie 8361 7557 8363 0 3 19:45 pts/0 00:00:00 python example1.py
위 코드를 프로세스 풀 형식으로 다시 작성할 수도 있습니다. API와 스레드 풀은 완전히 동일하므로 장황하게 설명하지 않겠습니다.
# example2.py from concurrent.futures import ProcessPoolExecutor import time def return_future_result(message): time.sleep(2) return message pool = ProcessPoolExecutor(max_workers=2) future1 = pool.submit(return_future_result, ("hello")) future2 = pool.submit(return_future_result, ("world")) print(future1.done()) time.sleep(3) print(future2.done()) print(future1.result()) print(future2.result())
실행 결과는 다음과 같습니다
ziwenxie :: ~ » python example2.py False True hello world ziwenxie :: ~ » ps -eLf | grep python ziwenxie 8560 7557 8560 3 3 19:53 pts/0 00:00:00 python example2.py ziwenxie 8560 7557 8563 0 3 19:53 pts/0 00:00:00 python example2.py ziwenxie 8560 7557 8564 0 3 19:53 pts/0 00:00:00 python example2.py ziwenxie 8561 8560 8561 0 1 19:53 pts/0 00:00:00 python example2.py ziwenxie 8562 8560 8562 0 1 19:53 pts/0 00:00:00 python example2.py
map/wait를 사용하여 스레드 풀/프로세스 풀 작업
Executor에서는 submit 외에도 map 메소드를 제공합니다. 및 내장 map의 사용법은 비슷합니다. 두 가지 예를 통해 두 가지의 차이점을 비교해 보겠습니다.
submit 작업 사용 검토
# example3.py import concurrent.futures import urllib.request URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/'] def load_url(url, timeout): with urllib.request.urlopen(url, timeout=timeout) as conn: return conn.read() # We can use a with statement to ensure threads are cleaned up promptly with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor: # Start the load operations and mark each future with its URL future_to_url = {executor.submit(load_url, url, 60): url for url in URLS} for future in concurrent.futures.as_completed(future_to_url): url = future_to_url[future] try: data = future.result() except Exception as exc: print('%r generated an exception: %s' % (url, exc)) else: print('%r page is %d bytes' % (url, len(data)))
실행 결과에서 알 수 있듯이 as_completed가 URLS 목록 요소 순서대로 반환되지 않습니다.
ziwenxie :: ~ » python example3.py 'http://example.com/' page is 1270 byte 'https://api.github.com/' page is 2039 bytes 'http://httpbin.org' page is 12150 bytes
map 사용
# example4.py import concurrent.futures import urllib.request URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/'] def load_url(url): with urllib.request.urlopen(url, timeout=60) as conn: return conn.read() # We can use a with statement to ensure threads are cleaned up promptly with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor: for url, data in zip(URLS, executor.map(load_url, URLS)): print('%r page is %d bytes' % (url, len(data)))
실행 결과에서 알 수 있듯이 map은 URLS 목록의 순서대로 요소를 반환하며 작성된 코드가 더 간결해졌습니다. 그리고 직관적입니다. 귀하의 특정한 필요에 따라 어느 하나를 선택할 수 있습니다.
ziwenxie :: ~ » python example4.py 'http://httpbin.org' page is 12150 bytes 'http://example.com/' page is 1270 bytes 'https://api.github.com/' page is 2039 bytes
세 번째 옵션은 wait입니다
wait 메소드는 튜플을 두 개 포함하며, 하나는 완료되고 다른 하나는 완료되지 않습니다. 대기 방법을 사용하면 더 많은 자유를 얻을 수 있다는 것입니다. FIRST_COMPLETED, FIRST_EXCEPTION 및 ALL_COMPLETE의 세 가지 매개변수를 받습니다.
다음 예시를 통해 세 매개변수의 차이점을 살펴보겠습니다.
from concurrent.futures import ThreadPoolExecutor, wait, as_completed from time import sleep from random import randint def return_after_random_secs(num): sleep(randint(1, 5)) return "Return of {}".format(num) pool = ThreadPoolExecutor(5) futures = [] for x in range(5): futures.append(pool.submit(return_after_random_secs, x)) print(wait(futures)) # print(wait(futures, timeout=None, return_when='FIRST_COMPLETED'))
기본값인 ALL_COMPLETED를 사용하면 스레드 풀의 모든 작업이 완료될 때까지 프로그램이 차단됩니다.
ziwenxie :: ~ » python example5.py DoneAndNotDoneFutures(done={ <Future at 0x7f0b06c9bc88 state=finished returned str>, <Future at 0x7f0b06cbaa90 state=finished returned str>, <Future at 0x7f0b06373898 state=finished returned str>, <Future at 0x7f0b06352ba8 state=finished returned str>, <Future at 0x7f0b06373b00 state=finished returned str>}, not_done=set())
FIRST_COMPLETED 매개변수를 사용하면 프로그램은 스레드 풀의 모든 작업이 완료될 때까지 기다리지 않습니다.
ziwenxie :: ~ » python example5.py DoneAndNotDoneFutures(done={ <Future at 0x7f84109edb00 state=finished returned str>, <Future at 0x7f840e2e9320 state=finished returned str>, <Future at 0x7f840f25ccc0 state=finished returned str>}, not_done={<Future at 0x7f840e2e9ba8 state=running>, <Future at 0x7f840e2e9940 state=running>})
생각하는 질문
multiprocessing.pool(ThreadPool)과 ProcessPollExecutor(ThreadPoolExecutor) 사이의 실행 효율성 격차를 비교하는 작은 프로그램을 작성하고 위에서 언급한 Future를 기반으로 왜 이런 일이 발생하는지 생각해 보세요. 결과.
위 내용은 Python 동시 프로그래밍 스레드 풀/프로세스 풀의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

PHP와 Python은 각각 고유 한 장점이 있으며 프로젝트 요구 사항에 따라 선택합니다. 1.PHP는 웹 개발, 특히 웹 사이트의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 간결한 구문을 가진 데이터 과학, 기계 학습 및 인공 지능에 적합하며 초보자에게 적합합니다.

데비안 시스템의 readdir 함수는 디렉토리 컨텐츠를 읽는 데 사용되는 시스템 호출이며 종종 C 프로그래밍에 사용됩니다. 이 기사에서는 ReadDir를 다른 도구와 통합하여 기능을 향상시키는 방법을 설명합니다. 방법 1 : C 언어 프로그램을 파이프 라인과 결합하고 먼저 C 프로그램을 작성하여 readDir 함수를 호출하고 결과를 출력하십시오.#포함#포함#포함#포함#includinTmain (intargc, char*argv []) {dir*dir; structdirent*entry; if (argc! = 2) {

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

이 기사에서는 Debian 시스템에서 NginxSSL 인증서를 업데이트하는 방법에 대해 안내합니다. 1 단계 : CertBot을 먼저 설치하십시오. 시스템에 CERTBOT 및 PYTHON3-CERTBOT-NGINX 패키지가 설치되어 있는지 확인하십시오. 설치되지 않은 경우 다음 명령을 실행하십시오. sudoapt-getupdatesudoapt-getinstallcertbotpython3-certbot-nginx 2 단계 : 인증서 획득 및 구성 rectbot 명령을 사용하여 nginx를 획득하고 nginx를 구성하십시오.

데비안 시스템에서 HTTPS 서버를 구성하려면 필요한 소프트웨어 설치, SSL 인증서 생성 및 SSL 인증서를 사용하기 위해 웹 서버 (예 : Apache 또는 Nginx)를 구성하는 등 여러 단계가 포함됩니다. 다음은 Apacheweb 서버를 사용하고 있다고 가정하는 기본 안내서입니다. 1. 필요한 소프트웨어를 먼저 설치하고 시스템이 최신 상태인지 확인하고 Apache 및 OpenSSL을 설치하십시오 : Sudoaptupdatesudoaptupgradesudoaptinsta

데비안에서 gitlab 플러그인을 개발하려면 몇 가지 특정 단계와 지식이 필요합니다. 다음은이 과정을 시작하는 데 도움이되는 기본 안내서입니다. Gitlab을 먼저 설치하려면 Debian 시스템에 Gitlab을 설치해야합니다. Gitlab의 공식 설치 매뉴얼을 참조 할 수 있습니다. API 액세스 토큰을 얻으십시오 API 통합을 수행하기 전에 Gitlab의 API 액세스 토큰을 먼저 가져와야합니다. Gitlab 대시 보드를 열고 사용자 설정에서 "AccessTokens"옵션을 찾은 다음 새 액세스 토큰을 생성하십시오. 생성됩니다

아파치는 인터넷 뒤의 영웅입니다. 웹 서버 일뿐 만 아니라 큰 트래픽을 지원하고 동적 콘텐츠를 제공하는 강력한 플랫폼이기도합니다. 모듈 식 설계를 통해 매우 높은 유연성을 제공하여 필요에 따라 다양한 기능을 확장 할 수 있습니다. 그러나 Modularity는 또한 신중한 관리가 필요한 구성 및 성능 문제를 제시합니다. Apache는 사용자 정의가 필요한 서버 시나리오에 적합하고 복잡한 요구를 충족시킵니다.
