느린 쿼리 로그에 대한 MySQL의 pt-query-digest 분석에 대한 자세한 소개
이 글은 주로 느린 쿼리 로그의 MySQL 느린 쿼리 pt-query-digest 분석에 대한 관련 정보를 소개하고 있으며, 이 글의 소개는 매우 자세하며 필요한 모든 사람들을 위한 특정 참고 가치가 있습니다. 아래에서 함께 살펴보겠습니다.
1. 소개
pt-query-digest는 mysql 느린 쿼리를 분석하는 도구입니다. SHOWPROCESSLIST 또는 tcpdump를 통해 캡처된 binlog, 일반 로그, 느린 로그 또는 MySQL 프로토콜 데이터입니다. 분석 결과는 파일로 출력할 수 있습니다. 분석 과정은 먼저 쿼리문의 조건을 매개변수화한 후, 매개변수화된 쿼리에 대해 그룹 통계를 수행하여 각 쿼리의 실행 시간, 횟수, 비율을 계산할 수 있습니다. 분석 결과적으로 문제가 식별되고 최적화됩니다.
2.perl 모듈
yum install -y perl-CPAN perl-Time-HiRes
설치 3 . 설치 단계
방법 1: rpm 설치
cd /usr/local/src wget percona.com/get/percona-toolkit.rpm yum install -y percona-toolkit.rpm
도구 설치 디렉터리: /usr/bin
방법 2: 소스 코드 설치
cd /usr/local/src wget percona.com/get/percona-toolkit.tar.gz tar zxf percona-toolkit.tar.gz cd percona-toolkit-2.2.19 perl Makefile.PL PREFIX=/usr/local/percona-toolkit make && make install
도구 설치 디렉터리는 /usr/local/percona-toolkit/bin
4. 각 도구 사용법 소개
(1) 느린 쿼리 로그 분석 통계
pt-query-digest /usr/local/mysql/data/slow.log
(2) 서버 요약
pt-summary
(3) 서버 디스크 모니터링
pt-diskstats
(4) mysql 서비스 상태 요약
pt-mysql-summary -- --user=root --password=root
3. pt-query-digest 구문 및 중요 옵션
pt-query-digest [OPTIONS] [FILES] [DSN]
-
--create-review-table --review 매개변수를 사용하여 분석 결과를 테이블로 출력하는 경우, 테이블이 없으면 자동으로 생성됩니다.
--create-history-table 분석 결과를 테이블로 출력하기 위해 --history 파라미터를 사용할 경우, 테이블이 없으면 자동으로 생성됩니다.
--filter 입력된 느린 쿼리를 지정된 문자열 에 따라 일치 및 필터링한 후 분석합니다
- -limit 출력 결과의 비율 또는 수량을 제한합니다. 기본값은 20개이며, 50%인 경우 총 응답 시간에 따라 큰 것에서 작은 것 순으로 정렬됩니다. 총량이 50%에 도달하면 출력이 차단됩니다.
--host mysql 서버 주소
--user mysql 사용자 이름
-- 비밀번호 mysql 사용자 비밀번호
--history 분석 결과는 동일한 문이 존재하고 다음에 --history를 사용할 때 더 자세합니다. 쿼리는 기록 테이블의 시간 간격과 다른 경우 데이터 테이블에 기록됩니다. 동일한 CHECKSUM을 쿼리하여 특정 유형의 쿼리에 대한 기록 변경 사항을 비교할 수 있습니다.
--review 분석 결과를 테이블에 저장합니다. 이 분석은 쿼리 조건 중 하나를 매개변수화하므로 비교적 간단합니다. 다음에 --review를 사용할 때 동일한 구문 분석이 존재하면 데이터 테이블에 기록되지 않습니다.
--출력 분석 결과 출력 유형, 값은 보고서(표준 분석 보고서), Slowlog(Mysql 느린 로그), json, json-anon, 일반 더 쉽게 읽을 수 있도록 보고서를 사용하세요.
--분석을 시작한 시간부터 값은 문자열이며 "yyyy-mm-dd [hh:mm" 형식으로 지정된 시점일 수 있습니다. :ss]" 또는 간단한 시간 값(s(초), h(시간), m(분), d(일))일 수 있습니다. 예를 들어 12h는 12시간 전에 계산이 시작되었음을 의미합니다.
--마감일까지, --since와 결합하여 일정 기간 내에 느린 쿼리를 분석할 수 있습니다.
4. pt-query-digest 출력 결과 분석
1부: 전체 통계 결과
전체: 전체 쿼리 수
시간 범위: 쿼리 실행 시간 범위
unique: 고유 쿼리 수, 즉 쿼리 조건을 매개변수화한 후 존재하는 쿼리 수
total: total min: 최소 max: maximum avg: 평균
95%: 작은 것부터 큰 것까지 모든 값을 정렬합니다. 95%에 위치한 숫자는 일반적으로 가장 많은 참조 값을 가집니다.
median: 중앙값, 작은 것부터 모든 값을 정렬합니다. ~ 크게, 95%에 위치 중간에 있는 숫자
# 该工具执行日志分析的用户时间,系统时间,物理内存占用大小,虚拟内存占用大小 # 340ms user time, 140ms system time, 23.99M rss, 203.11M vsz # 工具执行时间 # Current date: Fri Nov 25 02:37:18 2016 # 运行分析工具的主机名 # Hostname: localhost.localdomain # 被分析的文件名 # Files: slow.log # 语句总数量,唯一的语句数量,QPS,并发数 # Overall: 2 total, 2 unique, 0.01 QPS, 0.01x concurrency # 日志记录的时间范围 # Time range: 2016-11-22 06:06:18 to 06:11:40 # 属性 总计 最小 最大 平均 95% 标准 中等 # Attribute total min max avg 95% stddev median # ============ ======= ======= ======= ======= ======= ======= ======= # 语句执行时间 # Exec time 3s 640ms 2s 1s 2s 999ms 1s # 锁占用时间 # Lock time 1ms 0 1ms 723us 1ms 1ms 723us # 发送到客户端的行数 # Rows sent 5 1 4 2.50 4 2.12 2.50 # select语句扫描行数 # Rows examine 186.17k 0 186.17k 93.09k 186.17k 131.64k 93.09k # 查询的字符数 # Query size 455 15 440 227.50 440 300.52 227.50
2부: 쿼리 그룹화 통계 결과
순위: 모든 문에 대한 순위, 정렬 기준 쿼리 시간은 기본적으로 내림차순으로 전달됩니다. order-by는
쿼리 ID를 지정합니다. 쿼리 ID: 명령문 ID, (추가 공백 및 텍스트 문자 제거, 해시 값 계산)
응답: 총 응답 시간
time: 이 분석에서 이 쿼리의 총 시간 비율
calls: 실행 횟수, 즉, 이 분석에는 그러한 호출이 총 몇 개 있습니까?
R/Call 유형의 쿼리 문: 각 실행의 평균 응답 시간
V/M: 응답 시간 차이 -평균 비율
Item:查询对象
# Profile # Rank Query ID Response time Calls R/Call V/M Item # ==== ================== ============= ===== ====== ===== =============== # 1 0xF9A57DD5A41825CA 2.0529 76.2% 1 2.0529 0.00 SELECT # 2 0x4194D8F83F4F9365 0.6401 23.8% 1 0.6401 0.00 SELECT wx_member_base
第三部分:每一种查询的详细统计结果
由下面查询的详细统计结果,最上面的表格列出了执行次数、最大、最小、平均、95%等各项目的统计。
ID:查询的ID号,和上图的Query ID对应
Databases:数据库名
Users:各个用户执行的次数(占比)
Query_time distribution :查询时间分布, 长短体现区间占比,本例中1s-10s之间查询数量是10s以上的两倍。
Tables:查询中涉及到的表
Explain:SQL语句
# Query 1: 0 QPS, 0x concurrency, ID 0xF9A57DD5A41825CA at byte 802 # This item is included in the report because it matches --limit. # Scores: V/M = 0.00 # Time range: all events occurred at 2016-11-22 06:11:40 # Attribute pct total min max avg 95% stddev median # ============ === ======= ======= ======= ======= ======= ======= ======= # Count 50 1 # Exec time 76 2s 2s 2s 2s 2s 0 2s # Lock time 0 0 0 0 0 0 0 0 # Rows sent 20 1 1 1 1 1 0 1 # Rows examine 0 0 0 0 0 0 0 0 # Query size 3 15 15 15 15 15 0 15 # String: # Databases test # Hosts 192.168.8.1 # Users mysql # Query_time distribution # 1us # 10us # 100us # 1ms # 10ms # 100ms # 1s ################################################################ # 10s+ # EXPLAIN /*!50100 PARTITIONS*/ select sleep(2)\G
五、用法示例
1.直接分析慢查询文件:
pt-query-digest slow.log > slow_report.log
2.分析最近12小时内的查询:
pt-query-digest --since=12h slow.log > slow_report2.log
3.分析指定时间范围内的查询:
pt-query-digest slow.log --since '2017-01-07 09:30:00' --until '2017-01-07 10:00:00'> > slow_report3.log
4.分析指含有select语句的慢查询
pt-query-digest --filter '$event->{fingerprint} =~ m/^select/i' slow.log> slow_report4.log
5.针对某个用户的慢查询
pt-query-digest --filter '($event->{user} || "") =~ m/^root/i' slow.log> slow_report5.log
6.查询所有所有的全表扫描或full join的慢查询
pt-query-digest --filter '(($event->{Full_scan} || "") eq "yes") ||(($event->{Full_join} || "") eq "yes")' slow.log> slow_report6.log
7.把查询保存到query_review表
pt-query-digest --user=root –password=abc123 --review h=localhost,D=test,t=query_review--create-review-table slow.log
8.把查询保存到query_history表
pt-query-digest --user=root –password=abc123 --review h=localhost,D=test,t=query_history--create-review-table slow.log_0001 pt-query-digest --user=root –password=abc123 --review h=localhost,D=test,t=query_history--create-review-table slow.log_0002
9.通过tcpdump抓取mysql的tcp协议数据,然后再分析
tcpdump -s 65535 -x -nn -q -tttt -i any -c 1000 port 3306 > mysql.tcp.txt pt-query-digest --type tcpdump mysql.tcp.txt> slow_report9.log
10.分析binlog
mysqlbinlog mysql-bin.000093 > mysql-bin000093.sql pt-query-digest --type=binlog mysql-bin000093.sql > slow_report10.log
11.分析general log
pt-query-digest --type=genlog localhost.log > slow_report11.log
总结
위 내용은 느린 쿼리 로그에 대한 MySQL의 pt-query-digest 분석에 대한 자세한 소개의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템입니다. 1) 데이터베이스 및 테이블 작성 : CreateAbase 및 CreateTable 명령을 사용하십시오. 2) 기본 작업 : 삽입, 업데이트, 삭제 및 선택. 3) 고급 운영 : 가입, 하위 쿼리 및 거래 처리. 4) 디버깅 기술 : 확인, 데이터 유형 및 권한을 확인하십시오. 5) 최적화 제안 : 인덱스 사용, 선택을 피하고 거래를 사용하십시오.

다음 단계를 통해 phpmyadmin을 열 수 있습니다. 1. 웹 사이트 제어판에 로그인; 2. phpmyadmin 아이콘을 찾고 클릭하십시오. 3. MySQL 자격 증명을 입력하십시오. 4. "로그인"을 클릭하십시오.

Navicat Premium을 사용하여 데이터베이스 생성 : 데이터베이스 서버에 연결하고 연결 매개 변수를 입력하십시오. 서버를 마우스 오른쪽 버튼으로 클릭하고 데이터베이스 생성을 선택하십시오. 새 데이터베이스의 이름과 지정된 문자 세트 및 Collation의 이름을 입력하십시오. 새 데이터베이스에 연결하고 객체 브라우저에서 테이블을 만듭니다. 테이블을 마우스 오른쪽 버튼으로 클릭하고 데이터 삽입을 선택하여 데이터를 삽입하십시오.

응용 프로그램을 열고 새로운 연결 (Ctrl n)을 선택하여 Navicat에서 새로운 MySQL 연결을 만들 수 있습니다. "MySQL"을 연결 유형으로 선택하십시오. 호스트 이름/IP 주소, 포트, 사용자 이름 및 비밀번호를 입력하십시오. (선택 사항) 고급 옵션을 구성합니다. 연결을 저장하고 연결 이름을 입력하십시오.

MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템으로, 주로 데이터를 신속하고 안정적으로 저장하고 검색하는 데 사용됩니다. 작업 원칙에는 클라이언트 요청, 쿼리 해상도, 쿼리 실행 및 반환 결과가 포함됩니다. 사용의 예로는 테이블 작성, 데이터 삽입 및 쿼리 및 조인 작업과 같은 고급 기능이 포함됩니다. 일반적인 오류에는 SQL 구문, 데이터 유형 및 권한이 포함되며 최적화 제안에는 인덱스 사용, 최적화 된 쿼리 및 테이블 분할이 포함됩니다.

MySQL 및 SQL은 개발자에게 필수적인 기술입니다. 1.MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템이며 SQL은 데이터베이스를 관리하고 작동하는 데 사용되는 표준 언어입니다. 2.MYSQL은 효율적인 데이터 저장 및 검색 기능을 통해 여러 스토리지 엔진을 지원하며 SQL은 간단한 문을 통해 복잡한 데이터 작업을 완료합니다. 3. 사용의 예에는 기본 쿼리 및 조건 별 필터링 및 정렬과 같은 고급 쿼리가 포함됩니다. 4. 일반적인 오류에는 구문 오류 및 성능 문제가 포함되며 SQL 문을 확인하고 설명 명령을 사용하여 최적화 할 수 있습니다. 5. 성능 최적화 기술에는 인덱스 사용, 전체 테이블 스캔 피하기, 조인 작업 최적화 및 코드 가독성 향상이 포함됩니다.

Redis는 단일 스레드 아키텍처를 사용하여 고성능, 단순성 및 일관성을 제공합니다. 동시성을 향상시키기 위해 I/O 멀티플렉싱, 이벤트 루프, 비 블로킹 I/O 및 공유 메모리를 사용하지만 동시성 제한 제한, 단일 고장 지점 및 쓰기 집약적 인 워크로드에 부적합한 제한이 있습니다.

백업 또는 트랜잭션 롤백 메커니즘이없는 한 데이터베이스에서 직접 삭제 된 행 복구는 일반적으로 불가능합니다. 키 포인트 : 거래 롤백 : 트랜잭션이 데이터를 복구하기 전에 롤백을 실행합니다. 백업 : 데이터베이스의 일반 백업을 사용하여 데이터를 신속하게 복원 할 수 있습니다. 데이터베이스 스냅 샷 : 데이터베이스의 읽기 전용 사본을 작성하고 데이터를 실수로 삭제 한 후 데이터를 복원 할 수 있습니다. 주의해서 삭제 명령문을 사용하십시오. 실수로 데이터를 삭제하지 않도록 조건을주의 깊게 점검하십시오. WHERE 절을 사용하십시오 : 삭제할 데이터를 명시 적으로 지정하십시오. 테스트 환경 사용 : 삭제 작업을 수행하기 전에 테스트하십시오.
