Java의 휘발성 및 잠금 원리에 대한 자세한 소개
这篇文章主要介绍了java 中volatile和lock原理分析的相关资料,需要的朋友可以参考下
java 中volatile和lock原理分析
volatile和lock是Java中用于线程协同同步的两种机制。
Volatile
volatile是Java中的一个关键字,它的作用有
保证变量的可见性
防止重排序
保证64位变量(long,double)的原子性读写
volatile在Java语言规范中规定的是
The Java programming language allows threads to access shared variables (§17.1). As a rule, to ensure that shared variables are consistently and reliably updated, a thread should ensure that it has exclusive use of such variables by obtaining a lock that, conventionally, enforces mutual exclusion for those shared variables. The Java programming language provides a second mechanism, volatile fields, that is more convenient than locking for some purposes. A field may be declared volatile, in which case the Java Memory Model ensures that all threads see a consistent value for the variable . It is a compile-time error if a final variable is also declared volatile.
Java内存模型中规定了volatile的happen-before效果,对volatile变量的写操作happen-before于后续的读。这样volatile变量能够确保一个线程的修改对其他线程可见。volatile因为不能保证原子性,所以不能在有约束或后验条件的场景下使用,如i++,常用的场景是stop变量保证系统停止对其他线程可见,double-check lock单例中防止重排序来保证安全发布等。
以下面这段代码为例
public class TestVolatile { private static volatile boolean stop = false; public static void main(String[] args) { stop = true; boolean b = stop; } }
stop字段声明为volatile类型后,编译后的字节码中其变量的access_flag中ACC_VOLATILE位置为1。
关键的字节码内容如下
public static void main(java.lang.String[]); descriptor: ([Ljava/lang/String;)V flags: ACC_PUBLIC, ACC_STATIC Code: stack=1, locals=2, args_size=1 0: iconst_1 1: putstatic #2 // Field stop:Z 4: getstatic #2 // Field stop:Z 7: istore_1 8: return LineNumberTable: line 14: 0 line 15: 4 line 16: 8 LocalVariableTable: Start Length Slot Name Signature 0 9 0 args [Ljava/lang/String; 8 1 1 b Z static {}; descriptor: ()V flags: ACC_STATIC Code: stack=1, locals=0, args_size=0 0: iconst_0 1: putstatic #2 // Field stop:Z 4: return LineNumberTable: line 11: 0 }
通过hsdis查看虚拟机产生的汇编代码。
测试环境为java version “1.8.0_45”,MACOS10.12.1 i386:x86-64
在执行参数上添加
-XX:+UnlockDiagnosticVMOptions -XX:+LogCompilation -XX:+PrintAssembly -Xcomp -XX:CompileCommand=dontinline,*TestVolatile.main -XX:CompileCommand=compileonly,*TestVolatile.main
查看main方法的汇编指令结果
Decoding compiled method 0x000000010c732c50: Code: [Disassembling for mach='i386:x86-64'] [Entry Point] [Verified Entry Point] [Constants] # {method} {0x000000012422a2c8} 'main' '([Ljava/lang/String;)V' in 'com/concurrent/volatiles/TestVolatile' # parm0: rsi:rsi = '[Ljava/lang/String;' # [sp+0x40] (sp of caller) 0x000000010c732da0: mov %eax,-0x14000(%rsp) 0x000000010c732da7: push %rbp 0x000000010c732da8: sub $0x30,%rsp 0x000000010c732dac: movabs $0x12422a448,%rdi ; {metadata(method data for {method} {0x000000012422a2c8} 'main' '([Ljava/lang/String;)V' in 'com/concurrent/volatiles/TestVolatile')} 0x000000010c732db6: mov 0xdc(%rdi),%ebx 0x000000010c732dbc: add $0x8,%ebx 0x000000010c732dbf: mov %ebx,0xdc(%rdi) 0x000000010c732dc5: movabs $0x12422a2c8,%rdi ; {metadata({method} {0x000000012422a2c8} 'main' '([Ljava/lang/String;)V' in 'com/concurrent/volatiles/TestVolatile')} 0x000000010c732dcf: and $0x0,%ebx 0x000000010c732dd2: cmp $0x0,%ebx 0x000000010c732dd5: je 0x000000010c732e03 ;*iconst_1 ; - com.concurrent.volatiles.TestVolatile::main@0 (line 14) 0x000000010c732ddb: movabs $0x76adce798,%rsi ; {oop(a 'java/lang/Class' = 'com/concurrent/volatiles/TestVolatile')} 0x000000010c732de5: mov $0x1,%edi 0x000000010c732dea: mov %dil,0x68(%rsi) 0x000000010c732dee: lock addl $0x0,(%rsp) ;*putstatic stop ; - com.concurrent.volatiles.TestVolatile::main@1 (line 14) 0x000000010c732df3: movsbl 0x68(%rsi),%esi ;*getstatic stop ; - com.concurrent.volatiles.TestVolatile::main@4 (line 15) 0x000000010c732df7: add $0x30,%rsp 0x000000010c732dfb: pop %rbp 0x000000010c732dfc: test %eax,-0x3adbd02(%rip) # 0x0000000108c57100 ; {poll_return} 0x000000010c732e02: retq 0x000000010c732e03: mov %rdi,0x8(%rsp) 0x000000010c732e08: movq $0xffffffffffffffff,(%rsp) 0x000000010c732e10: callq 0x000000010c7267e0 ; OopMap{rsi=Oop off=117} ;*synchronization entry ; - com.concurrent.volatiles.TestVolatile::main@-1 (line 14) ; {runtime_call} 0x000000010c732e15: jmp 0x000000010c732ddb 0x000000010c732e17: nop 0x000000010c732e18: nop 0x000000010c732e19: mov 0x2a8(%r15),%rax 0x000000010c732e20: movabs $0x0,%r10 0x000000010c732e2a: mov %r10,0x2a8(%r15) 0x000000010c732e31: movabs $0x0,%r10 0x000000010c732e3b: mov %r10,0x2b0(%r15) 0x000000010c732e42: add $0x30,%rsp 0x000000010c732e46: pop %rbp 0x000000010c732e47: jmpq 0x000000010c6940e0 ; {runtime_call} [Exception Handler]
可以看到在mov %dil,0x68(%rsi)给stop赋值后增加了lock addl $0x0,(%rsp)
IA32中对lock的说明是
The LOCK # signal is asserted during execution of the instruction following the lock prefix. This signal can be used in a multiprocessor system to ensure exclusive use of shared memory while LOCK # is asserted
lock用于在多处理器中执行指令时对共享内存的独占使用。它的副作用是能够将当前处理器对应缓存的内容刷新到内存,并使其他处理器对应的缓存失效。另外还提供了有序的指令无法越过这个内存屏障的作用。
Lock
Java中提供的锁的关键字是synchronized, 可以加在方法块上,也可以加在方法声明中。
synchronized关键字起到的作用是设置一个独占访问临界区,在进入这个临界区前要先获取对应的监视器锁,任何Java对象都可以成为监视器锁,声明在静态方法上时监视器锁是当前类的Class对象,实例方法上是当前实例。
synchronized提供了原子性、可见性和防止重排序的保证。
JMM中定义监视器锁的释放操作happen-before与后续的同一个监视器锁获取操作。再结合程序顺序规则就可以形成内存传递可见性保证。
下面以一段代码查看各个层次的实现
public class TestSynchronize { private int count; private void inc() { synchronized (this) { count++; } } public static void main(String[] args) { new TestSynchronize().inc(); } }
编译后inc方法的字节码为
private void inc(); descriptor: ()V flags: ACC_PRIVATE Code: stack=3, locals=3, args_size=1 0: aload_0 1: dup 2: astore_1 3: monitorenter 4: aload_0 5: dup 6: getfield #2 // Field count:I 9: iconst_1 10: iadd 11: putfield #2 // Field count:I 14: aload_1 15: monitorexit 16: goto 24 19: astore_2 20: aload_1 21: monitorexit 22: aload_2 23: athrow 24: return Exception table: from to target type 4 16 19 any 19 22 19 any LineNumberTable: line 14: 0 line 15: 4
在synchronized代码块前后增加的monitorenter和monitorexist两个JVM字节码指令,指令的参数是this引用。
hotspot中对于monitor_enter和monitor_exit的处理是
void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { if (!GenerateSynchronizationCode) return; // for slow path, use debug info for state after successful locking CodeStub* slow_path = new MonitorEnterStub(object, lock, info); load_stack_address_monitor(monitor_no, lock); // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); } void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { if (!GenerateSynchronizationCode) return; // setup registers LIR_Opr hdr = lock; lock = new_hdr; CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no); load_stack_address_monitor(monitor_no, lock); unlock_object(hdr, object, lock, scratch, slow_path); }
inc方法在本机上输出的汇编代码为
Decoding compiled method 0x0000000115be3e50: Code: [Entry Point] [Constants] # {method} {0x0000000113082328} 'inc' '()V' in 'com/concurrent/lock/TestSynchronize' # [sp+0x50] (sp of caller) 0x0000000115be3fc0: mov 0x8(%rsi),%r10d 0x0000000115be3fc4: shl $0x3,%r10 0x0000000115be3fc8: cmp %rax,%r10 0x0000000115be3fcb: jne 0x0000000115b1de20 ; {runtime_call} 0x0000000115be3fd1: data32 data32 nopw 0x0(%rax,%rax,1) 0x0000000115be3fdc: data32 data32 xchg %ax,%ax [Verified Entry Point] 0x0000000115be3fe0: mov %eax,-0x14000(%rsp) 0x0000000115be3fe7: push %rbp 0x0000000115be3fe8: sub $0x40,%rsp 0x0000000115be3fec: movabs $0x113082848,%rax ; {metadata(method data for {method} {0x0000000113082328} 'inc' '()V' in 'com/concurrent/lock/TestSynchronize')} 0x0000000115be3ff6: mov 0xdc(%rax),%edi 0x0000000115be3ffc: add $0x8,%edi 0x0000000115be3fff: mov %edi,0xdc(%rax) 0x0000000115be4005: movabs $0x113082328,%rax ; {metadata({method} {0x0000000113082328} 'inc' '()V' in 'com/concurrent/lock/TestSynchronize')} 0x0000000115be400f: and $0x0,%edi 0x0000000115be4012: cmp $0x0,%edi 0x0000000115be4015: je 0x0000000115be418d ;*aload_0 ; - com.concurrent.lock.TestSynchronize::inc@0 (line 14) 0x0000000115be401b: lea 0x20(%rsp),%rdi 0x0000000115be4020: mov %rsi,0x8(%rdi) 0x0000000115be4024: mov (%rsi),%rax 0x0000000115be4027: mov %rax,%rbx 0x0000000115be402a: and $0x7,%rbx 0x0000000115be402e: cmp $0x5,%rbx 0x0000000115be4032: jne 0x0000000115be40b9 0x0000000115be4038: mov 0x8(%rsi),%ebx 0x0000000115be403b: shl $0x3,%rbx 0x0000000115be403f: mov 0xa8(%rbx),%rbx 0x0000000115be4046: or %r15,%rbx 0x0000000115be4049: xor %rax,%rbx 0x0000000115be404c: and $0xffffffffffffff87,%rbx 0x0000000115be4050: je 0x0000000115be40e1 0x0000000115be4056: test $0x7,%rbx 0x0000000115be405d: jne 0x0000000115be40a6 0x0000000115be405f: test $0x300,%rbx 0x0000000115be4066: jne 0x0000000115be4085 0x0000000115be4068: and $0x37f,%rax 0x0000000115be406f: mov %rax,%rbx 0x0000000115be4072: or %r15,%rbx 0x0000000115be4075: lock cmpxchg %rbx,(%rsi) 0x0000000115be407a: jne 0x0000000115be41a4 0x0000000115be4080: jmpq 0x0000000115be40e1 0x0000000115be4085: mov 0x8(%rsi),%ebx 0x0000000115be4088: shl $0x3,%rbx 0x0000000115be408c: mov 0xa8(%rbx),%rbx 0x0000000115be4093: or %r15,%rbx 0x0000000115be4096: lock cmpxchg %rbx,(%rsi) 0x0000000115be409b: jne 0x0000000115be41a4 0x0000000115be40a1: jmpq 0x0000000115be40e1 0x0000000115be40a6: mov 0x8(%rsi),%ebx 0x0000000115be40a9: shl $0x3,%rbx 0x0000000115be40ad: mov 0xa8(%rbx),%rbx 0x0000000115be40b4: lock cmpxchg %rbx,(%rsi) 0x0000000115be40b9: mov (%rsi),%rax 0x0000000115be40bc: or $0x1,%rax 0x0000000115be40c0: mov %rax,(%rdi) 0x0000000115be40c3: lock cmpxchg %rdi,(%rsi) 0x0000000115be40c8: je 0x0000000115be40e1 0x0000000115be40ce: sub %rsp,%rax 0x0000000115be40d1: and $0xfffffffffffff007,%rax 0x0000000115be40d8: mov %rax,(%rdi) 0x0000000115be40db: jne 0x0000000115be41a4 ;*monitorenter ; - com.concurrent.lock.TestSynchronize::inc@3 (line 14) 0x0000000115be40e1: mov 0xc(%rsi),%eax ;*getfield count ; - com.concurrent.lock.TestSynchronize::inc@6 (line 15) 0x0000000115be40e4: inc %eax 0x0000000115be40e6: mov %eax,0xc(%rsi) ;*putfield count ; - com.concurrent.lock.TestSynchronize::inc@11 (line 15) 0x0000000115be40e9: lea 0x20(%rsp),%rax 0x0000000115be40ee: mov 0x8(%rax),%rdi 0x0000000115be40f2: mov (%rdi),%rsi 0x0000000115be40f5: and $0x7,%rsi 0x0000000115be40f9: cmp $0x5,%rsi 0x0000000115be40fd: je 0x0000000115be411a 0x0000000115be4103: mov (%rax),%rsi 0x0000000115be4106: test %rsi,%rsi 0x0000000115be4109: je 0x0000000115be411a 0x0000000115be410f: lock cmpxchg %rsi,(%rdi) 0x0000000115be4114: jne 0x0000000115be41b7 ;*monitorexit ; - com.concurrent.lock.TestSynchronize::inc@15 (line 16) 0x0000000115be411a: movabs $0x113082848,%rax ; {metadata(method data for {method} {0x0000000113082328} 'inc' '()V' in 'com/concurrent/lock/TestSynchronize')} 0x0000000115be4124: incl 0x108(%rax) ;*goto ; - com.concurrent.lock.TestSynchronize::inc@16 (line 16) 0x0000000115be412a: add $0x40,%rsp 0x0000000115be412e: pop %rbp 0x0000000115be412f: test %eax,-0x684e035(%rip) # 0x000000010f396100 ; {poll_return} 0x0000000115be4135: retq ;*return ; - com.concurrent.lock.TestSynchronize::inc@24 (line 17) 0x0000000115be4136: mov 0x2a8(%r15),%rax 0x0000000115be413d: xor %r10,%r10 0x0000000115be4140: mov %r10,0x2a8(%r15) 0x0000000115be4147: xor %r10,%r10 0x0000000115be414a: mov %r10,0x2b0(%r15) 0x0000000115be4151: mov %rax,%rsi 0x0000000115be4154: lea 0x20(%rsp),%rax 0x0000000115be4159: mov 0x8(%rax),%rbx 0x0000000115be415d: mov (%rbx),%rdi 0x0000000115be4160: and $0x7,%rdi 0x0000000115be4164: cmp $0x5,%rdi 0x0000000115be4168: je 0x0000000115be4185 0x0000000115be416e: mov (%rax),%rdi 0x0000000115be4171: test %rdi,%rdi 0x0000000115be4174: je 0x0000000115be4185 0x0000000115be417a: lock cmpxchg %rdi,(%rbx) 0x0000000115be417f: jne 0x0000000115be41ca ;*monitorexit ; - com.concurrent.lock.TestSynchronize::inc@21 (line 16) 0x0000000115be4185: mov %rsi,%rax 0x0000000115be4188: jmpq 0x0000000115be4205 0x0000000115be418d: mov %rax,0x8(%rsp) 0x0000000115be4192: movq $0xffffffffffffffff,(%rsp) 0x0000000115be419a: callq 0x0000000115bd5be0 ; OopMap{rsi=Oop off=479} ;*synchronization entry ; - com.concurrent.lock.TestSynchronize::inc@-1 (line 14) ; {runtime_call} 0x0000000115be419f: jmpq 0x0000000115be401b 0x0000000115be41a4: mov %rsi,0x8(%rsp) 0x0000000115be41a9: mov %rdi,(%rsp) 0x0000000115be41ad: callq 0x0000000115bd4060 ; OopMap{rsi=Oop [40]=Oop off=498} ;*monitorenter ; - com.concurrent.lock.TestSynchronize::inc@3 (line 14) ; {runtime_call} 0x0000000115be41b2: jmpq 0x0000000115be40e1 0x0000000115be41b7: lea 0x20(%rsp),%rax 0x0000000115be41bc: mov %rax,(%rsp) 0x0000000115be41c0: callq 0x0000000115bd4420 ; {runtime_call} 0x0000000115be41c5: jmpq 0x0000000115be411a 0x0000000115be41ca: lea 0x20(%rsp),%rax 0x0000000115be41cf: mov %rax,(%rsp) 0x0000000115be41d3: callq 0x0000000115bd4420 ; {runtime_call} 0x0000000115be41d8: jmp 0x0000000115be4185 0x0000000115be41da: nop 0x0000000115be41db: nop 0x0000000115be41dc: mov 0x2a8(%r15),%rax 0x0000000115be41e3: movabs $0x0,%r10 0x0000000115be41ed: mov %r10,0x2a8(%r15) 0x0000000115be41f4: movabs $0x0,%r10 0x0000000115be41fe: mov %r10,0x2b0(%r15) 0x0000000115be4205: add $0x40,%rsp 0x0000000115be4209: pop %rbp 0x0000000115be420a: jmpq 0x0000000115b440e0 ; {runtime_call} [Exception Handler]
其中lock cmpxchg为Compare And Exchange
CMPXCHG compares its destination (first) operand to the value in AL, AX or EAX (depending on the size of the instruction). If they are equal, it copies its source (second) operand into the destination and sets the zero flag. Otherwise, it clears the zero flag and leaves the destination alone.
CMPXCHG is intended to be used for atomic operations in multitasking or multiprocessor environments. To safely update a value in shared memory, for example, you might load the value into EAX, load the updated value into EBX, and then execute the instruction lock cmpxchg [value],ebx. If value has not changed since being loaded, it is updated with your desired new value, and the zero flag is set to let you know it has worked. (The LOCK prefix prevents another processor doing anything in the middle of this operation: it guarantees atomicity.) However, if another processor has modified the value in between your load and your attempted store, the store does not happen, and you are notified of the failure by a cleared zero flag, so you can go round and try again.
위 내용은 Java의 휘발성 및 잠금 원리에 대한 자세한 소개의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Java의 Smith Number 가이드. 여기서는 정의, Java에서 스미스 번호를 확인하는 방법에 대해 논의합니다. 코드 구현의 예.

이 기사에서는 가장 많이 묻는 Java Spring 면접 질문과 자세한 답변을 보관했습니다. 그래야 면접에 합격할 수 있습니다.

Java 8은 스트림 API를 소개하여 데이터 컬렉션을 처리하는 강력하고 표현적인 방법을 제공합니다. 그러나 스트림을 사용할 때 일반적인 질문은 다음과 같은 것입니다. 기존 루프는 조기 중단 또는 반환을 허용하지만 스트림의 Foreach 메소드는이 방법을 직접 지원하지 않습니다. 이 기사는 이유를 설명하고 스트림 처리 시스템에서 조기 종료를 구현하기위한 대체 방법을 탐색합니다. 추가 읽기 : Java Stream API 개선 스트림 foreach를 이해하십시오 Foreach 메소드는 스트림의 각 요소에서 하나의 작업을 수행하는 터미널 작동입니다. 디자인 의도입니다

Java의 TimeStamp to Date 안내. 여기서는 소개와 예제와 함께 Java에서 타임스탬프를 날짜로 변환하는 방법에 대해서도 설명합니다.

캡슐은 3 차원 기하학적 그림이며, 양쪽 끝에 실린더와 반구로 구성됩니다. 캡슐의 부피는 실린더의 부피와 양쪽 끝에 반구의 부피를 첨가하여 계산할 수 있습니다. 이 튜토리얼은 다른 방법을 사용하여 Java에서 주어진 캡슐의 부피를 계산하는 방법에 대해 논의합니다. 캡슐 볼륨 공식 캡슐 볼륨에 대한 공식은 다음과 같습니다. 캡슐 부피 = 원통형 볼륨 2 반구 볼륨 안에, R : 반구의 반경. H : 실린더의 높이 (반구 제외). 예 1 입력하다 반경 = 5 단위 높이 = 10 단위 산출 볼륨 = 1570.8 입방 단위 설명하다 공식을 사용하여 볼륨 계산 : 부피 = π × r2 × h (4

PHP와 Python은 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1.PHP는 간단한 구문과 높은 실행 효율로 웹 개발에 적합합니다. 2. Python은 간결한 구문 및 풍부한 라이브러리를 갖춘 데이터 과학 및 기계 학습에 적합합니다.

PHP는 서버 측에서 널리 사용되는 스크립팅 언어이며 특히 웹 개발에 적합합니다. 1.PHP는 HTML을 포함하고 HTTP 요청 및 응답을 처리 할 수 있으며 다양한 데이터베이스를 지원할 수 있습니다. 2.PHP는 강력한 커뮤니티 지원 및 오픈 소스 리소스를 통해 동적 웹 컨텐츠, 프로세스 양식 데이터, 액세스 데이터베이스 등을 생성하는 데 사용됩니다. 3. PHP는 해석 된 언어이며, 실행 프로세스에는 어휘 분석, 문법 분석, 편집 및 실행이 포함됩니다. 4. PHP는 사용자 등록 시스템과 같은 고급 응용 프로그램을 위해 MySQL과 결합 할 수 있습니다. 5. PHP를 디버깅 할 때 error_reporting () 및 var_dump ()와 같은 함수를 사용할 수 있습니다. 6. 캐싱 메커니즘을 사용하여 PHP 코드를 최적화하고 데이터베이스 쿼리를 최적화하며 내장 기능을 사용하십시오. 7

Java는 초보자와 숙련된 개발자 모두가 배울 수 있는 인기 있는 프로그래밍 언어입니다. 이 튜토리얼은 기본 개념부터 시작하여 고급 주제를 통해 진행됩니다. Java Development Kit를 설치한 후 간단한 "Hello, World!" 프로그램을 작성하여 프로그래밍을 연습할 수 있습니다. 코드를 이해한 후 명령 프롬프트를 사용하여 프로그램을 컴파일하고 실행하면 "Hello, World!"가 콘솔에 출력됩니다. Java를 배우면 프로그래밍 여정이 시작되고, 숙달이 깊어짐에 따라 더 복잡한 애플리케이션을 만들 수 있습니다.
