Python 메뉴 재귀 쿼리 및 json으로의 데이터 변환 예
이 글은 Python 재귀 쿼리 메뉴를 주로 소개하고 이를 json 예제로 변환한 것입니다. 관심 있는 친구들이 참고할 수 있습니다.
최근에 Python으로 메뉴를 작성해야 했는데 작성하는 데 2~3일이 걸렸습니다. 이제는 여기에 기록하고 필요한 친구들이 배울 수 있습니다.
참고: 이 기사에서는 실행 불가능한 코드 전체를 인용하고 코드의 핵심 부분만 발췌했습니다.
환경
데이터베이스: mysql
python: 3.6
테이블 구조
CREATE TABLE `tb_menu` ( `id` varchar(32) NOT NULL COMMENT '唯一标识', `menu_name` varchar(40) DEFAULT NULL COMMENT '菜单名称', `menu_url` varchar(100) DEFAULT NULL COMMENT '菜单链接', `type` varchar(1) DEFAULT NULL COMMENT '类型', `parent` varchar(32) DEFAULT NULL COMMENT '父级目录id', `del_flag` varchar(1) NOT NULL DEFAULT '0' COMMENT '删除标志 0:不删除 1:已删除', `create_time` datetime DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间', `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间', PRIMARY KEY (`id`) USING BTREE ) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='菜单表';
Python code
메뉴 개체에는 하위 메뉴 목록 "subMenus"에 대한 참조가 있으며 유형은 list
핵심 코드
def set_subMenus(id, menus): """ 根据传递过来的父菜单id,递归设置各层次父菜单的子菜单列表 :param id: 父级id :param menus: 子菜单列表 :return: 如果这个菜单没有子菜单,返回None;如果有子菜单,返回子菜单列表 """ # 记录子菜单列表 subMenus = [] # 遍历子菜单 for m in menus: if m.parent == id: subMenus.append(m) # 把子菜单的子菜单再循环一遍 for sub in subMenus: menus2 = queryByParent(sub.id) # 还有子菜单 if len(menus): sub.subMenus = set_subMenus(sub.id, menus2) # 子菜单列表不为空 if len(subMenus): return subMenus else: # 没有子菜单了 return None
테스트 방법
def test_set_subMenus(self): # 一级菜单 rootMenus = queryByParent('') for menu in rootMenus: subMenus = queryByParent(menu.id) menu.subMenus = set_subMenus(menu.id, subMenus)
참고: 기본 프로세스는 먼저 첫 번째 수준 메뉴를 쿼리한 다음 이 수준의 메뉴 ID와 이 수준 메뉴의 하위 메뉴 목록을 전달하는 것입니다. set_subMenus 메소드에 추가하고 하위 메뉴 목록을 반복적으로 수행합니다.
은 메뉴 아래의 모든 하위 메뉴를 쿼리하기 위해 메뉴 ID 전달을 지원합니다. null 문자를 전달하면 루트 디렉터리에서 쿼리가 시작됩니다.
"rootMenus" 객체에서 전체 메뉴 트리 구조를 볼 수 있습니다
Json으로 변환
내가 사용하는 ORM 프레임워크는 sqlalchemy입니다. 데이터베이스에서 직접 쿼리한 Menu 개체는 Json으로 변환될 때 오류를 보고합니다. Menu 개체를 Dto 개체로 변환하려면 DTO 클래스를 다시 정의해야 합니다.
MenuDto
class MenuDto(): def init(self, id, menu_name, menu_url, type, parent, subMenus): super().init() self.id = id self.menu_name = menu_name self.menu_url = menu_url self.type = type self.parent = parent self.subMenus = subMenus def str(self): return '%s(id=%s,menu_name=%s,menu_url=%s,type=%s,parent=%s)' % ( self.class.name, self.id, self.menu_name, self.menu_url, self.type, self.parent) repr = str
그래서 하위 메뉴를 재귀적으로 설정하는 방법을 재정의했습니다.
def set_subMenuDtos(id, menuDtos): """ 根据传递过来的父菜单id,递归设置各层次父菜单的子菜单列表 :param id: 父级id :param menuDtos: 子菜单列表 :return: 如果这个菜单没有子菜单,返回None;如果有子菜单,返回子菜单列表 """ # 记录子菜单列表 subMenuDtos = [] # 遍历子菜单 for m in menuDtos: m.name = to_pinyin(m.menu_name) if m.parent == id: subMenuDtos.append(m) # 把子菜单的子菜单再循环一遍 for sub in subMenuDtos: menus2 = queryByParent(sub.id) menusDto2 = model_list_2_dto_list(menus2, "MenuDto(id='', menu_name='', menu_url='', type='', parent='', subMenus='')") # 还有子菜单 if len(menuDtos): if len(menusDto2): sub.subMenus = set_subMenuDtos(sub.id, menusDto2) else: # 没有子菜单,删除该节点 sub.delattr('subMenus') # 子菜单列表不为空 if len(subMenuDtos): return subMenuDtos else: # 没有子菜单了 return None
비고:
메뉴에 하위 메뉴가 없으면 "subMenus" 속성을 삭제하세요. 그렇지 않으면 Json으로 변환할 때 null 값이 나타납니다
model_list_2_dto_list 메서드는 메뉴 목록을 MenuDto 목록으로 변환할 수 있습니다
to_pinyin은 한자를 병음으로 변환하는 방식이므로 여기서는 주의할 필요가 없습니다.
뷰 레이어가 Json 방식을 반환합니다
def get(self): param = request.args id = param['id'] # 如果id为空,查询的是从根目录开始的各级菜单 rootMenus = queryByParent(id) rootMenuDtos = model_list_2_dto_list(rootMenus, "MenuDto(id='', menu_name='', menu_url='', type='', parent='', subMenus='')") # 设置各级子菜单 for menu in rootMenuDtos: menu.name = to_pinyin(menu.menu_name) subMenus = queryByParent(menu.id) if len(subMenus): subMenuDtos = model_list_2_dto_list(subMenus, "MenuDto(id='', menu_name='', menu_url='', type='', parent='', subMenus='')") menu.subMenus = set_subMenuDtos(menu.id, subMenuDtos) else: menu.delattr('subMenus') menus_json = json.dumps(rootMenuDtos, default=lambda o: o.dict, sort_keys=True, allow_nan=false, skipkeys=true) # 需要转字典,否则返回的字符串会带有“\” menus_dict = json_dict(menus_json) return fullResponse(menus_dict) fullResponse from flask import jsonify def fullResponse(data='', msg='', code=0): if msg == '': return jsonify({'code': code, 'data': data}) elif data == '': return jsonify({'code': code, 'msg': msg}) else: return jsonify({'code': code, 'msg': msg, 'data': data})
참고: Python에서 json과 사전의 의미는 비슷합니다. json이 최종적으로 페이지에 반환되면 먼저 json_dict 메서드를 사용하여 이를 dict 유형으로 변환해야 합니다. 그렇지 않으면 반환된 문자열이 "" 포함
쿼리 결과
위 내용은 Python 메뉴 재귀 쿼리 및 json으로의 데이터 변환 예의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











PHP와 Python은 고유 한 장점과 단점이 있으며 선택은 프로젝트 요구와 개인 선호도에 달려 있습니다. 1.PHP는 대규모 웹 애플리케이션의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 데이터 과학 및 기계 학습 분야를 지배합니다.

CentOS 시스템에서 Pytorch 모델을 효율적으로 교육하려면 단계가 필요 하며이 기사는 자세한 가이드를 제공합니다. 1. 환경 준비 : 파이썬 및 종속성 설치 : CentOS 시스템은 일반적으로 파이썬을 사전 설치하지만 버전은 더 오래 될 수 있습니다. YUM 또는 DNF를 사용하여 Python 3 및 Upgrade Pip : Sudoyumupdatepython3 (또는 SudodnfupdatePython3), PIP3INSTALL-UPGRADEPIP를 설치하는 것이 좋습니다. CUDA 및 CUDNN (GPU 가속도) : NVIDIAGPU를 사용하는 경우 Cudatool을 설치해야합니다.

CentOS 시스템에서 Pytorch GPU 가속도를 활성화하려면 Cuda, Cudnn 및 GPU 버전의 Pytorch를 설치해야합니다. 다음 단계는 프로세스를 안내합니다. CUDA 및 CUDNN 설치 CUDA 버전 호환성 결정 : NVIDIA-SMI 명령을 사용하여 NVIDIA 그래픽 카드에서 지원하는 CUDA 버전을보십시오. 예를 들어, MX450 그래픽 카드는 CUDA11.1 이상을 지원할 수 있습니다. Cudatoolkit 다운로드 및 설치 : NVIDIACUDATOOLKIT의 공식 웹 사이트를 방문하여 그래픽 카드에서 지원하는 가장 높은 CUDA 버전에 따라 해당 버전을 다운로드하여 설치하십시오. CUDNN 라이브러리 설치 :

Docker는 Linux 커널 기능을 사용하여 효율적이고 고립 된 응용 프로그램 실행 환경을 제공합니다. 작동 원리는 다음과 같습니다. 1. 거울은 읽기 전용 템플릿으로 사용되며, 여기에는 응용 프로그램을 실행하는 데 필요한 모든 것을 포함합니다. 2. Union 파일 시스템 (Unionfs)은 여러 파일 시스템을 스택하고 차이점 만 저장하고 공간을 절약하고 속도를 높입니다. 3. 데몬은 거울과 컨테이너를 관리하고 클라이언트는 상호 작용을 위해 사용합니다. 4. 네임 스페이스 및 CGroup은 컨테이너 격리 및 자원 제한을 구현합니다. 5. 다중 네트워크 모드는 컨테이너 상호 연결을 지원합니다. 이러한 핵심 개념을 이해 함으로써만 Docker를 더 잘 활용할 수 있습니다.

Python과 JavaScript는 커뮤니티, 라이브러리 및 리소스 측면에서 고유 한 장점과 단점이 있습니다. 1) Python 커뮤니티는 친절하고 초보자에게 적합하지만 프론트 엔드 개발 리소스는 JavaScript만큼 풍부하지 않습니다. 2) Python은 데이터 과학 및 기계 학습 라이브러리에서 강력하며 JavaScript는 프론트 엔드 개발 라이브러리 및 프레임 워크에서 더 좋습니다. 3) 둘 다 풍부한 학습 리소스를 가지고 있지만 Python은 공식 문서로 시작하는 데 적합하지만 JavaScript는 MDNWebDocs에서 더 좋습니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Centos에서 Pytorch 버전을 선택할 때 다음과 같은 주요 요소를 고려해야합니다. 1. Cuda 버전 호환성 GPU 지원 : NVIDIA GPU가 있고 GPU 가속도를 사용하려면 해당 CUDA 버전을 지원하는 Pytorch를 선택해야합니다. NVIDIA-SMI 명령을 실행하여 지원되는 CUDA 버전을 볼 수 있습니다. CPU 버전 : GPU가 없거나 GPU를 사용하지 않으려면 Pytorch의 CPU 버전을 선택할 수 있습니다. 2. 파이썬 버전 Pytorch

CentOS 시스템에 대한 Pytorch 분산 교육에는 다음 단계가 필요합니다. Pytorch 설치 : 전제는 Python과 PIP가 CentOS 시스템에 설치된다는 것입니다. CUDA 버전에 따라 Pytorch 공식 웹 사이트에서 적절한 설치 명령을 받으십시오. CPU 전용 교육의 경우 다음 명령을 사용할 수 있습니다. PipinStalltorchtorchvisiontorchaudio GPU 지원이 필요한 경우 CUDA 및 CUDNN의 해당 버전이 설치되어 있는지 확인하고 해당 PyTorch 버전을 설치하려면 설치하십시오. 분산 환경 구성 : 분산 교육에는 일반적으로 여러 기계 또는 단일 기계 다중 GPU가 필요합니다. 장소

Centos Nginx를 설치하려면 다음 단계를 수행해야합니다. 개발 도구, PCRE-DEVEL 및 OPENSSL-DEVEL과 같은 종속성 설치. nginx 소스 코드 패키지를 다운로드하고 압축을 풀고 컴파일하고 설치하고 설치 경로를/usr/local/nginx로 지정하십시오. nginx 사용자 및 사용자 그룹을 만들고 권한을 설정하십시오. 구성 파일 nginx.conf를 수정하고 청취 포트 및 도메인 이름/IP 주소를 구성하십시오. Nginx 서비스를 시작하십시오. 종속성 문제, 포트 충돌 및 구성 파일 오류와 같은 일반적인 오류는주의를 기울여야합니다. 캐시를 켜고 작업자 프로세스 수 조정과 같은 특정 상황에 따라 성능 최적화를 조정해야합니다.
