binlog를 기반으로 mysql 행 레코드 수정 분석
최근에 mysql 플래시백 작성을 마쳤는데 갑자기 다음과 같은 사용 시나리오가 있다는 것을 발견했습니다. 어떤 경우에는 특정 기간 동안 MySQL이 얼마나 많은 데이터를 수정했는지 계산할 수 있습니까? 얼마나 많은 거래가 발생했나요? 주로 어떤 양식이 변경되나요? 변화의 정도는 얼마입니까? 하지만 행 레코드를 수정할 필요는 없으며 행 데이터의 변경 사항만 알면 됩니다. 그래서 나도 정리했다.
어젯밤에 작성한 스크립트입니다. 제 python 능력이 부족해서 원래는 이 글을 올리지 않을 생각이었는데, 생각해보니 정원 친구들이 최적화 제안을 해줄 수도 있겠네요.
1 구현 내용
경우에 따라 일정 기간 동안 MySQL이 얼마나 많은 데이터를 수정했는지 계산할 수도 있나요? 얼마나 많은 거래가 발생했나요? 주로 어떤 테이블이 변경되나요? 변화의 정도는 얼마입니까? 하지만 행 레코드를 수정할 필요는 없으며 행 데이터의 변경 사항만 알면 됩니다.
이러한 상황 중 일부는 모니터링을 통해 대략적으로 이해할 수 있지만 binlog를 기반으로 완전히 분석할 수도 있습니다. binlog의 형식은 행 모드입니다.
제가 플래시백을 쓸 때, 그런데 이 단계도 Python으로 작성했습니다. 원리는 동일하지만, 제 Python이 부족해서 여유가 많을 수도 있습니다. 성능 향상을 위해 Garden 친구들이 이를 최적화하는 데 도움을 주기를 바랍니다.
먼저 Python 스크립트의 분석 결과는 트랜잭션 시간 소비, 트랜잭션에 영향을 받는 행 수, DML 행 수, 가장 자주 작동하는 테이블의 테이블 상태 등 4가지 부분으로 나누어 다음과 같이 게시됩니다.
2 스크립트에 대한 간략한 설명
스크립트가 의존하는 모듈 중 pymysql은 직접 설치해야 합니다.
5개의함수가 정의된 queryanalyse 클래스를 만듭니다: _get_db, create_tab, rowrecord, binlogdesc 및 closeconn.
2.1 _get_db
이 함수는 입력 매개변수 값을 구문 분석하는 데 사용됩니다. 매개변수 값은 총 7개이며 모두 입력해야 합니다. 호스트, 사용자, 비밀번호, 포트, 테이블 이름for transaction, 해당 약어는 다음과 같습니다.
file 경로, binlog 파일
-tr : 레코드용 테이블 이름, 행 레코드를 저장할 테이블 이름-tt : 트랜잭션용 테이블 이름, 트랜잭션을 저장할 테이블 이름 예를 들어 다음 스크립트를 실행합니다. python queryanalyse.py - h=127.0.0.1 -P=3310 -u=root -p=password -f=/tmp/stock_binlog.log -tt=flashback.tbtran -tr=flashback.tbrow, 이 함수는 각 옵션의 매개변수 값을 저장합니다.2.2 create_tab
binlog 파일의 분석 결과를 저장하기 위해 두 개의 테이블을 생성합니다. 하나는 트랜잭션의 실행 시작 시간과 종료 시간을 저장하는 데 사용되고, 다른 하나는 -tt 옵션으로 테이블 이름을 지정하고, 다른 하나는 레코드의 각 행에 대한 수정 사항을 저장하는 데 사용되며, 테이블 이름은 옵션 -tr. 거래 테이블 기록 내용: 거래 시작 시간 및 거래 종료 시간. 행 레코드 테이블의 내용: 라이브러리 이름, 테이블 이름, DML 유형 및 트랜잭션에 해당하는 트랜잭션 테이블 번호.root@localhost:mysql3310.sock 14:42:29 [flashback]>show create table tbrow \G*************************** 1. row *************************** Table: tbrowCreate Table: CREATE TABLE `tbrow` ( `auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT, `sqltype` int(11) NOT NULL COMMENT '1 is insert,2 is update,3 is delete', `tran_num` int(11) NOT NULL COMMENT 'the transaction number', `dbname` varchar(50) NOT NULL, `tbname` varchar(50) NOT NULL, PRIMARY KEY (`auto_id`), KEY `sqltype` (`sqltype`), KEY `dbname` (`dbname`), KEY `tbname` (`tbname`) ) ENGINE=InnoDB AUTO_INCREMENT=295151 DEFAULT CHARSET=utf81 row in set (0.00 sec) root@localhost:mysql3310.sock 14:42:31 [flashback]>SHOW CREATE TABLE TBTRAN \G*************************** 1. row *************************** Table: TBTRANCreate Table: CREATE TABLE `tbtran` ( `auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT, `begin_time` datetime NOT NULL, `end_time` datetime NOT NULL, PRIMARY KEY (`auto_id`) ) ENGINE=InnoDB AUTO_INCREMENT=6390 DEFAULT CHARSET=utf81 row in set (0.00 sec)
2.3 rowrecord
주요 기능, binlog 파일의 내용을 분석합니다. 다음은 몇 가지 규칙입니다.每个事务的结束点,是以 'Xid = ' 来查找
事务的开始时间,是事务内的第一个 'Table_map' 行里边的时间
事务的结束时间,是以 'Xid = '所在行的 里边的时间
每个行数据是属于哪个表格,是以 'Table_map'来查找
DML的类型是按照 行记录开头的情况是否为:'### INSERT INTO' 、'### UPDATE' 、'### DELETE FROM'
注意,单个事务可以包含多个表格多种DML多行数据修改的情况。
2.4 binlogdesc
描述分析结果,简单4个SQL分析。
分析修改行数据的 事务耗时情况
分析修改行数据的 事务影响行数情况
分析DML分布情况
分析 最多DML操作的表格 ,取前十个分析
2.5 closeconn
关闭数据库连接。
3 使用说明
首先,确保python安装了pymysql模块,把python脚本拷贝到文件 queryanalyse.py。
然后,把要分析的binlog文件先用 mysqlbinlog 指令分析存储,具体binlog的文件说明,可以查看之前的博文:关于binary log那些事——认真码了好长一篇。mysqlbinlog的指令使用方法,可以详细查看文档:https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html 。
比较常用通过指定开始时间跟结束时间来分析 binlog文件。
mysqlbinlog --start-datetime='2017-04-23 00:00:03' --stop-datetime='2017-04-23 00:30:00' --base64-output=decode-rows -v /data/mysql/logs/mysql-bin.007335 > /tmp/binlog_test.log
分析后,可以把这个 binlog_test.log文件拷贝到其他空闲服务器执行分析,只需要有个空闲的DB来存储分析记录即可。
假设这个时候,拷贝 binlog_test.log到测试服务器上,测试服务器上的数据库可以用来存储分析内容,则可以执行python脚本了,注意要进入到python脚本的目录中,或者指定python脚本路径。
python queryanalyse.py -h=127.0.0.1 -P=3310 -u=root -p=password -f= /tmp/binlog_test.log -tt=flashback.tbtran -tr=flashback.tbrow
没了,就等待输出吧。
性能是硬伤,在虚拟机上测试,大概500M的binlog文件需要分析2-3min,有待提高!
4 python脚本
1 import pymysql 2 from pymysql.cursors import DictCursor 3 import re 4 import os 5 import sys 6 import datetime 7 import time 8 import logging 9 import importlib 10 importlib.reload(logging) 11 logging.basicConfig(level=logging.DEBUG,format='%(asctime)s %(levelname)s %(message)s ') 12 13 14 usage=''' usage: python [script's path] [option] 15 ALL options need to assign: 16 17 -h : host, the database host,which database will store the results after analysis 18 -u : user, the db user 19 -p : password, the db user's password 20 -P : port, the db port 21 -f : file path, the binlog file 22 -tr : table name for record , the table name to store the row record 23 -tt : table name for transaction, the table name to store transactions 24 Example: python queryanalyse.py -h=127.0.0.1 -P=3310 -u=root -p=password -f=/tmp/stock_binlog.log -tt=flashback.tbtran -tr=flashback.tbrow 25 26 ''' 27 28 class queryanalyse: 29 def init(self): 30 #初始化 31 self.host='' 32 self.user='' 33 self.password='' 34 self.port='3306' 35 self.fpath='' 36 self.tbrow='' 37 self.tbtran='' 38 39 self._get_db() 40 logging.info('assign values to parameters is done:host={},user={},password=***,port={},fpath={},tb_for_record={},tb_for_tran={}'.format(self.host,self.user,self.port,self.fpath,self.tbrow,self.tbtran)) 41 42 self.mysqlconn = pymysql.connect(host=self.host, user=self.user, password=self.password, port=self.port,charset='utf8') 43 self.cur = self.mysqlconn.cursor(cursor=DictCursor) 44 logging.info('MySQL which userd to store binlog event connection is ok') 45 46 self.begin_time='' 47 self.end_time='' 48 self.db_name='' 49 self.tb_name='' 50 51 def _get_db(self): 52 #解析用户输入的选项参数值,这里对password的处理是明文输入,可以自行处理成是input格式, 53 #由于可以拷贝binlog文件到非线上环境分析,所以password这块,没有特殊处理 54 logging.info('begin to assign values to parameters') 55 if len(sys.argv) == 1: 56 print(usage) 57 sys.exit(1) 58 elif sys.argv[1] == '--help': 59 print(usage) 60 sys.exit() 61 elif len(sys.argv) > 2: 62 for i in sys.argv[1:]: 63 _argv = i.split('=') 64 if _argv[0] == '-h': 65 self.host = _argv[1] 66 elif _argv[0] == '-u': 67 self.user = _argv[1] 68 elif _argv[0] == '-P': 69 self.port = int(_argv[1]) 70 elif _argv[0] == '-f': 71 self.fpath = _argv[1] 72 elif _argv[0] == '-tr': 73 self.tbrow = _argv[1] 74 elif _argv[0] == '-tt': 75 self.tbtran = _argv[1] 76 elif _argv[0] == '-p': 77 self.password = _argv[1] 78 else: 79 print(usage) 80 81 def create_tab(self): 82 #创建两个表格:一个用户存储事务情况,一个用户存储每一行数据修改的情况 83 #注意,一个事务可以存储多行数据修改的情况 84 logging.info('creating table ...') 85 create_tb_sql ='''CREATE TABLE IF NOT EXISTS {} ( 86 `auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT, 87 `begin_time` datetime NOT NULL, 88 `end_time` datetime NOT NULL, 89 PRIMARY KEY (`auto_id`) 90 ) ENGINE=InnoDB DEFAULT CHARSET=utf8; 91 CREATE TABLE IF NOT EXISTS {} ( 92 `auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT, 93 `sqltype` int(11) NOT NULL COMMENT '1 is insert,2 is update,3 is delete', 94 `tran_num` int(11) NOT NULL COMMENT 'the transaction number', 95 `dbname` varchar(50) NOT NULL, 96 `tbname` varchar(50) NOT NULL, 97 PRIMARY KEY (`auto_id`), 98 KEY `sqltype` (`sqltype`), 99 KEY `dbname` (`dbname`),100 KEY `tbname` (`tbname`)101 ) ENGINE=InnoDB DEFAULT CHARSET=utf8;102 truncate table {};103 truncate table {};104 '''.format(self.tbtran,self.tbrow,self.tbtran,self.tbrow)105 106 self.cur.execute(create_tb_sql)107 logging.info('created table {} and {}'.format(self.tbrow,self.tbtran))108 109 def rowrecord(self):110 #处理每一行binlog111 #事务的结束采用 'Xid =' 来划分112 #分析结果,按照一个事务为单位存储提交一次到db113 try:114 tran_num=1 #事务数115 record_sql='' #行记录的insert sql116 tran_sql='' #事务的insert sql117 118 self.create_tab()119 120 with open(self.fpath,'r') as binlog_file:121 logging.info('begining to analyze the binlog file ,this may be take a long time !!!')122 logging.info('analyzing...')123 124 for bline in binlog_file:125 126 if bline.find('Table_map:') != -1:127 l = bline.index('server')128 n = bline.index('Table_map')129 begin_time = bline[:l:].rstrip(' ').replace('#', '20')130 131 if record_sql=='':132 self.begin_time = begin_time[0:4] + '-' + begin_time[4:6] + '-' + begin_time[6:]133 134 self.db_name = bline[n::].split(' ')[1].replace('`', '').split('.')[0]135 self.tb_name = bline[n::].split(' ')[1].replace('`', '').split('.')[1]136 bline=''137 138 elif bline.startswith('### INSERT INTO'):139 record_sql=record_sql+"insert into {}(sqltype,tran_num,dbname,tbname) VALUES (1,{},'{}','{}');".format(self.tbrow,tran_num,self.db_name,self.tb_name)140 141 elif bline.startswith('### UPDATE'):142 record_sql=record_sql+"insert into {}(sqltype,tran_num,dbname,tbname) VALUES (2,{},'{}','{}');".format(self.tbrow,tran_num,self.db_name,self.tb_name)143 144 elif bline.startswith('### DELETE FROM'):145 record_sql=record_sql+"insert into {}(sqltype,tran_num,dbname,tbname) VALUES (3,{},'{}','{}');".format(self.tbrow,tran_num,self.db_name,self.tb_name)146 147 elif bline.find('Xid =') != -1:148 149 l = bline.index('server')150 end_time = bline[:l:].rstrip(' ').replace('#', '20')151 self.end_time = end_time[0:4] + '-' + end_time[4:6] + '-' + end_time[6:]152 tran_sql=record_sql+"insert into {}(begin_time,end_time) VALUES ('{}','{}')".format(self.tbtran,self.begin_time,self.end_time)153 154 self.cur.execute(tran_sql)155 self.mysqlconn.commit()156 record_sql = ''157 tran_num += 1158 159 except Exception:160 return 'funtion rowrecord error'161 162 def binlogdesc(self):163 sql=''164 t_num=0165 r_num=0166 logging.info('Analysed result printing...\n')167 #分析总的事务数跟行修改数量168 sql="select 'tbtran' name,count(*) nums from {} union all select 'tbrow' name,count(*) nums from {};".format(self.tbtran,self.tbrow)169 self.cur.execute(sql)170 rows=self.cur.fetchall()171 for row in rows:172 if row['name']=='tbtran':173 t_num = row['nums']174 else:175 r_num = row['nums']176 print('This binlog file has {} transactions, {} rows are changed '.format(t_num,r_num))177 178 # 计算 最耗时 的单个事务179 # 分析每个事务的耗时情况,分为5个时间段来描述180 # 这里正常应该是 以毫秒来分析的,但是binlog中,只精确时间到second181 sql='''select 182 count(case when cost_sec between 0 and 1 then 1 end ) cos_1,183 count(case when cost_sec between 1.1 and 5 then 1 end ) cos_5,184 count(case when cost_sec between 5.1 and 10 then 1 end ) cos_10,185 count(case when cost_sec between 10.1 and 30 then 1 end ) cos_30,186 count(case when cost_sec >30.1 then 1 end ) cos_more,187 max(cost_sec) cos_max188 from 189 (190 select 191 auto_id,timestampdiff(second,begin_time,end_time) cost_sec192 from {}193 ) a;'''.format(self.tbtran)194 self.cur.execute(sql)195 rows=self.cur.fetchall()196 197 for row in rows:198 print('The most cost time : {} '.format(row['cos_max']))199 print('The distribution map of each transaction costed time: ')200 print('Cost time between 0 and 1 second : {} , {}%'.format(row['cos_1'],int(row['cos_1']*100/t_num)))201 print('Cost time between 1.1 and 5 second : {} , {}%'.format(row['cos_5'], int(row['cos_5'] * 100 / t_num)))202 print('Cost time between 5.1 and 10 second : {} , {}%'.format(row['cos_10'], int(row['cos_10'] * 100 / t_num)))203 print('Cost time between 10.1 and 30 second : {} , {}%'.format(row['cos_30'], int(row['cos_30'] * 100 / t_num)))204 print('Cost time > 30.1 : {} , {}%\n'.format(row['cos_more'], int(row['cos_more'] * 100 / t_num)))205 206 # 计算 单个事务影响行数最多 的行数量207 # 分析每个事务 影响行数 情况,分为5个梯度来描述208 sql='''select 209 count(case when nums between 0 and 10 then 1 end ) row_1,210 count(case when nums between 11 and 100 then 1 end ) row_2,211 count(case when nums between 101 and 1000 then 1 end ) row_3,212 count(case when nums between 1001 and 10000 then 1 end ) row_4,213 count(case when nums >10001 then 1 end ) row_5,214 max(nums) row_max215 from 216 (217 select 218 count(*) nums219 from {} group by tran_num220 ) a;'''.format(self.tbrow)221 self.cur.execute(sql)222 rows=self.cur.fetchall()223 224 for row in rows:225 print('The most changed rows for each row: {} '.format(row['row_max']))226 print('The distribution map of each transaction changed rows : ')227 print('Changed rows between 1 and 10 second : {} , {}%'.format(row['row_1'],int(row['row_1']*100/t_num)))228 print('Changed rows between 11 and 100 second : {} , {}%'.format(row['row_2'], int(row['row_2'] * 100 / t_num)))229 print('Changed rows between 101 and 1000 second : {} , {}%'.format(row['row_3'], int(row['row_3'] * 100 / t_num)))230 print('Changed rows between 1001 and 10000 second : {} , {}%'.format(row['row_4'], int(row['row_4'] * 100 / t_num)))231 print('Changed rows > 10001 : {} , {}%\n'.format(row['row_5'], int(row['row_5'] * 100 / t_num)))232 233 # 分析 各个行数 DML的类型情况234 # 描述 delete,insert,update的分布情况235 sql='select sqltype ,count(*) nums from {} group by sqltype ;'.format(self.tbrow)236 self.cur.execute(sql)237 rows=self.cur.fetchall()238 239 print('The distribution map of the {} changed rows : '.format(r_num))240 for row in rows:241 242 if row['sqltype']==1:243 print('INSERT rows :{} , {}% '.format(row['nums'],int(row['nums']*100/r_num)))244 if row['sqltype']==2:245 print('UPDATE rows :{} , {}% '.format(row['nums'],int(row['nums']*100/r_num)))246 if row['sqltype']==3:247 print('DELETE rows :{} , {}%\n '.format(row['nums'],int(row['nums']*100/r_num)))248 249 # 描述 影响行数 最多的表格250 # 可以分析是哪些表格频繁操作,这里显示前10个table name251 sql = '''select 252 dbname,tbname ,253 count(*) ALL_rows,254 count(*)*100/{} per,255 count(case when sqltype=1 then 1 end) INSERT_rows,256 count(case when sqltype=2 then 1 end) UPDATE_rows,257 count(case when sqltype=3 then 1 end) DELETE_rows258 from {} 259 group by dbname,tbname 260 order by ALL_rows desc 261 limit 10;'''.format(r_num,self.tbrow)262 self.cur.execute(sql)263 rows = self.cur.fetchall()264 265 print('The distribution map of the {} changed rows : '.format(r_num))266 print('tablename'.ljust(50),267 '|','changed_rows'.center(15),268 '|','percent'.center(10),269 '|','insert_rows'.center(18),270 '|','update_rows'.center(18),271 '|','delete_rows'.center(18)272 )273 print('-------------------------------------------------------------------------------------------------------------------------------------------------')274 for row in rows:275 print((row['dbname']+'.'+row['tbname']).ljust(50),276 '|',str(row['ALL_rows']).rjust(15),277 '|',(str(int(row['per']))+'%').rjust(10),278 '|',str(row['INSERT_rows']).rjust(10)+' , '+(str(int(row['INSERT_rows']*100/row['ALL_rows']))+'%').ljust(5),279 '|',str(row['UPDATE_rows']).rjust(10)+' , '+(str(int(row['UPDATE_rows']*100/row['ALL_rows']))+'%').ljust(5),280 '|',str(row['DELETE_rows']).rjust(10)+' , '+(str(int(row['DELETE_rows']*100/row['ALL_rows']))+'%').ljust(5),281 )282 print('\n')283 284 logging.info('Finished to analyse the binlog file !!!')285 286 def closeconn(self):287 self.cur.close()288 logging.info('release db connections\n')289 290 def main():291 p = queryanalyse()292 p.rowrecord()293 p.binlogdesc()294 p.closeconn()295 296 if name == "main":297 main()
위 내용은 binlog를 기반으로 mysql 행 레코드 수정 분석의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











빅 데이터 구조 처리 기술: 청킹(Chunking): 데이터 세트를 분할하고 청크로 처리하여 메모리 소비를 줄입니다. 생성기: 전체 데이터 세트를 로드하지 않고 데이터 항목을 하나씩 생성하므로 무제한 데이터 세트에 적합합니다. 스트리밍: 파일을 읽거나 결과를 한 줄씩 쿼리하므로 대용량 파일이나 원격 데이터에 적합합니다. 외부 저장소: 매우 큰 데이터 세트의 경우 데이터를 데이터베이스 또는 NoSQL에 저장합니다.

선형 복잡성에서 로그 복잡성까지 조회 시간을 줄이는 인덱스를 구축하여 MySQL 쿼리 성능을 최적화할 수 있습니다. SQL 삽입을 방지하고 쿼리 성능을 향상하려면 PREPAREDStatements를 사용하세요. 쿼리 결과를 제한하고 서버에서 처리되는 데이터의 양을 줄입니다. 적절한 조인 유형 사용, 인덱스 생성, 하위 쿼리 사용 고려 등 조인 쿼리를 최적화합니다. 쿼리를 분석하여 병목 현상을 식별하고, 캐싱을 사용하여 데이터베이스 로드를 줄이고, 오버헤드를 최소화합니다.

PHP에서 MySQL 데이터베이스를 백업하고 복원하는 작업은 다음 단계에 따라 수행할 수 있습니다. 데이터베이스 백업: mysqldump 명령을 사용하여 데이터베이스를 SQL 파일로 덤프합니다. 데이터베이스 복원: mysql 명령을 사용하여 SQL 파일에서 데이터베이스를 복원합니다.

MySQL 테이블에 데이터를 삽입하는 방법은 무엇입니까? 데이터베이스에 연결: mysqli를 사용하여 데이터베이스에 대한 연결을 설정합니다. SQL 쿼리 준비: 삽입할 열과 값을 지정하는 INSERT 문을 작성합니다. 쿼리 실행: query() 메서드를 사용하여 삽입 쿼리를 실행하면 확인 메시지가 출력됩니다.

MySQL 8.4(2024년 최신 LTS 릴리스)에 도입된 주요 변경 사항 중 하나는 "MySQL 기본 비밀번호" 플러그인이 더 이상 기본적으로 활성화되지 않는다는 것입니다. 또한 MySQL 9.0에서는 이 플러그인을 완전히 제거합니다. 이 변경 사항은 PHP 및 기타 앱에 영향을 미칩니다.

PHP에서 MySQL 저장 프로시저를 사용하려면: PDO 또는 MySQLi 확장을 사용하여 MySQL 데이터베이스에 연결합니다. 저장 프로시저를 호출하는 문을 준비합니다. 저장 프로시저를 실행합니다. 결과 집합을 처리합니다(저장 프로시저가 결과를 반환하는 경우). 데이터베이스 연결을 닫습니다.

PHP를 사용하여 MySQL 테이블을 생성하려면 다음 단계가 필요합니다. 데이터베이스에 연결합니다. 데이터베이스가 없으면 작성하십시오. 데이터베이스를 선택합니다. 테이블을 생성합니다. 쿼리를 실행합니다. 연결을 닫습니다.

Oracle 데이터베이스와 MySQL은 모두 관계형 모델을 기반으로 하는 데이터베이스이지만 호환성, 확장성, 데이터 유형 및 보안 측면에서 Oracle이 우수하고, MySQL은 속도와 유연성에 중점을 두고 중소 규모 데이터 세트에 더 적합합니다. ① Oracle은 광범위한 데이터 유형을 제공하고, ② 고급 보안 기능을 제공하고, ③ 엔터프라이즈급 애플리케이션에 적합하고, ① MySQL은 NoSQL 데이터 유형을 지원하고, ② 보안 조치가 적고, ③ 중소 규모 애플리케이션에 적합합니다.
