Python으로 구현된 이진 트리의 정의 및 순회 공유
이 글에서는 주로 python에서 구현한 이진 트리 정의와 순회 알고리즘을 소개합니다. Python을 기반으로 정의된 이진 트리와 일반적인 순회 연산 구현 기술을 구체적인 예를 기반으로 분석합니다.
예제는 다음과 같습니다. 이 기사에서는 Python으로 구현된 이진 트리 정의 및 순회 알고리즘을 설명합니다. 참고용으로 모든 사람과 공유하세요. 세부 사항은 다음과 같습니다.
Python 초보자는 의사 결정 트리를 구현해야 합니다. 먼저 Python을 사용하여 이진 트리 데이터 구조를 구현하는 연습을 하세요. 트리를 구축할 때 설정된 이진 트리가 균형 잡힌 이진 트리인지 확인하기 위한 처리가 수행됩니다.
# -*- coding: utf-8 -*- from collections import deque class Node: def init(self,val,left=None,right=None): self.val=val self.left=left self.right=right #setter and getter def get_val(self): return self.val def set_val(self,val): self.val=val def get_left(self): return self.left def set_left(self,left): self.left=left def get_right(self): return self.right def set_right(self,right): self.right=right class Tree: def init(self,list): list=sorted(list) self.root=self.build_tree(list) #递归建立平衡二叉树 def build_tree(self,list): l=0 r=len(list)-1 if(l>r): return None if(l==r): return Node(list[l]) mid=(l+r)/2 root=Node(list[mid]) root.left=self.build_tree(list[:mid]) root.right=self.build_tree(list[mid+1:]) return root #前序遍历 def preorder(self,root): if(root is None): return print root.val self.preorder(root.left) self.preorder(root.right) #后序遍历 def postorder(self,root): if(root is None): return self.postorder(root.left) self.postorder(root.right) print root.val #中序遍历 def inorder(self,root): if(root is None): return self.inorder(root.left) print root.val self.inorder(root.right) #层序遍历 def levelorder(self,root): if root is None: return queue =deque([root]) while(len(queue)>0): size=len(queue) for i in range(size): node =queue.popleft() print node.val if node.left is not None: queue.append(node.left) if node.right is not None: queue.append(node.right) list=[1,-1,3,4,5] tree=Tree(list) print '中序遍历:' tree.inorder(tree.root) print '层序遍历:' tree.levelorder(tree.root) print '前序遍历:' tree.preorder(tree.root) print '后序遍历:' tree.postorder(tree.root)
출력:
中序遍历 -1 1 3 4 5 层序遍历 3 -1 4 1 5 前序遍历 3 -1 1 4 5 后序遍历 1 -1 5 4 3
설정된 이진 트리는 아래와 같습니다.
위 내용은 Python으로 구현된 이진 트리의 정의 및 순회 공유의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











PHP와 Python은 고유 한 장점과 단점이 있으며 선택은 프로젝트 요구와 개인 선호도에 달려 있습니다. 1.PHP는 대규모 웹 애플리케이션의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 데이터 과학 및 기계 학습 분야를 지배합니다.

CentOS 시스템에서 Pytorch GPU 가속도를 활성화하려면 Cuda, Cudnn 및 GPU 버전의 Pytorch를 설치해야합니다. 다음 단계는 프로세스를 안내합니다. CUDA 및 CUDNN 설치 CUDA 버전 호환성 결정 : NVIDIA-SMI 명령을 사용하여 NVIDIA 그래픽 카드에서 지원하는 CUDA 버전을보십시오. 예를 들어, MX450 그래픽 카드는 CUDA11.1 이상을 지원할 수 있습니다. Cudatoolkit 다운로드 및 설치 : NVIDIACUDATOOLKIT의 공식 웹 사이트를 방문하여 그래픽 카드에서 지원하는 가장 높은 CUDA 버전에 따라 해당 버전을 다운로드하여 설치하십시오. CUDNN 라이브러리 설치 :

Python과 JavaScript는 커뮤니티, 라이브러리 및 리소스 측면에서 고유 한 장점과 단점이 있습니다. 1) Python 커뮤니티는 친절하고 초보자에게 적합하지만 프론트 엔드 개발 리소스는 JavaScript만큼 풍부하지 않습니다. 2) Python은 데이터 과학 및 기계 학습 라이브러리에서 강력하며 JavaScript는 프론트 엔드 개발 라이브러리 및 프레임 워크에서 더 좋습니다. 3) 둘 다 풍부한 학습 리소스를 가지고 있지만 Python은 공식 문서로 시작하는 데 적합하지만 JavaScript는 MDNWebDocs에서 더 좋습니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Docker는 Linux 커널 기능을 사용하여 효율적이고 고립 된 응용 프로그램 실행 환경을 제공합니다. 작동 원리는 다음과 같습니다. 1. 거울은 읽기 전용 템플릿으로 사용되며, 여기에는 응용 프로그램을 실행하는 데 필요한 모든 것을 포함합니다. 2. Union 파일 시스템 (Unionfs)은 여러 파일 시스템을 스택하고 차이점 만 저장하고 공간을 절약하고 속도를 높입니다. 3. 데몬은 거울과 컨테이너를 관리하고 클라이언트는 상호 작용을 위해 사용합니다. 4. 네임 스페이스 및 CGroup은 컨테이너 격리 및 자원 제한을 구현합니다. 5. 다중 네트워크 모드는 컨테이너 상호 연결을 지원합니다. 이러한 핵심 개념을 이해 함으로써만 Docker를 더 잘 활용할 수 있습니다.

Minio Object Storage : Centos System Minio 하의 고성능 배포는 Go Language를 기반으로 개발 한 고성능 분산 객체 저장 시스템입니다. Amazons3과 호환됩니다. Java, Python, JavaScript 및 Go를 포함한 다양한 클라이언트 언어를 지원합니다. 이 기사는 CentOS 시스템에 대한 Minio의 설치 및 호환성을 간단히 소개합니다. CentOS 버전 호환성 Minio는 다음을 포함하되 이에 국한되지 않는 여러 CentOS 버전에서 확인되었습니다. CentOS7.9 : 클러스터 구성, 환경 준비, 구성 파일 설정, 디스크 파티셔닝 및 미니를 다루는 완전한 설치 안내서를 제공합니다.

CentOS 시스템에 대한 Pytorch 분산 교육에는 다음 단계가 필요합니다. Pytorch 설치 : 전제는 Python과 PIP가 CentOS 시스템에 설치된다는 것입니다. CUDA 버전에 따라 Pytorch 공식 웹 사이트에서 적절한 설치 명령을 받으십시오. CPU 전용 교육의 경우 다음 명령을 사용할 수 있습니다. PipinStalltorchtorchvisiontorchaudio GPU 지원이 필요한 경우 CUDA 및 CUDNN의 해당 버전이 설치되어 있는지 확인하고 해당 PyTorch 버전을 설치하려면 설치하십시오. 분산 환경 구성 : 분산 교육에는 일반적으로 여러 기계 또는 단일 기계 다중 GPU가 필요합니다. 장소

CentOS 시스템에 Pytorch를 설치할 때는 적절한 버전을 신중하게 선택하고 다음 주요 요소를 고려해야합니다. 1. 시스템 환경 호환성 : 운영 체제 : CentOS7 이상을 사용하는 것이 좋습니다. Cuda 및 Cudnn : Pytorch 버전 및 Cuda 버전은 밀접하게 관련되어 있습니다. 예를 들어, pytorch1.9.0은 cuda11.1을 필요로하고 Pytorch2.0.1은 cuda11.3을 필요로합니다. CUDNN 버전도 CUDA 버전과 일치해야합니다. Pytorch 버전을 선택하기 전에 호환 CUDA 및 CUDNN 버전이 설치되었는지 확인하십시오. 파이썬 버전 : Pytorch 공식 지점

Centos의 최신 버전으로 Pytorch를 업데이트하면 다음 단계를 수행 할 수 있습니다. 방법 1 : PIP를 사용하여 PIP 업데이트 : 먼저 PIP의 PIP 버전이 최신 버전의 PyTorch를 제대로 설치하지 못할 수 있기 때문에 PIP가 최신 버전인지 확인하십시오. PipinStall-UpgradePip Unin Incalls of Pytorch (설치된 경우) : PipuninStalltorchtorchvisiontorchaudio 설치 최신 정보
