목차
ndarray 생성
2차원 배열
생성 시 유형을 지정하세요
특수 행렬 만들기
특정 규칙이 있는 행렬 만들기
기본 연산
덧셈, 뺄셈, 곱셈 그리고 삼각형의 나눗셈 기능적 논리 연산
행렬 연산
일반적으로 사용되는 전역 함수
행렬 인덱스 슬라이스 탐색
행렬 탐색
행렬의 특수 연산
행렬 모양 변경--reshape
행렬을 병합
백엔드 개발 파이썬 튜토리얼 NumPy의 일반적인 메소드 요약

NumPy의 일반적인 메소드 요약

Aug 17, 2017 am 11:26 AM
numpy 일반적으로 사용되는 요약

NumPy는 Python용 오픈 소스 수치 컴퓨팅 확장 프로그램입니다. 이 도구는 Python의 자체 중첩 목록 구조(행렬을 나타내는 데에도 사용할 수 있음)보다 훨씬 더 효율적으로 대규모 행렬을 저장하고 처리하는 데 사용할 수 있습니다. NumPy(Numeric Python)는 행렬 데이터 유형, 벡터 처리 및 정교한 산술 라이브러리와 같은 다양한 고급 수치 프로그래밍 도구를 제공합니다. 엄격한 숫자 처리를 위해 제작되었습니다. 이는 로렌스 리버모어(Lawrence Livermore)와 같은 핵심 과학 컴퓨팅 조직뿐만 아니라 많은 대규모 금융 회사에서 주로 사용되며 NASA는 원래 C++, Fortran 또는 Matlab을 사용하여 수행되었던 일부 작업을 처리하는 데 이를 사용합니다.

numpy, ndarray 유형의 데이터 유형은 표준 라이브러리의 array.array와 다릅니다.

ndarray 생성

>>> import numpy as np
>>> a = np.array([2,3,4])
>>> a
array([2, 3, 4])
>>> a.dtype
dtype('int64')
>>> b = np.array([1.2, 3.5, 5.1])
>>> b.dtype
dtype('float64')
로그인 후 복사

2차원 배열

>>> b = np.array([(1.5,2,3), (4,5,6)])
>>> b
array([[ 1.5,  2. ,  3. ],
       [ 4. ,  5. ,  6. ]])
로그인 후 복사

생성 시 유형을 지정하세요

>>> c = np.array( [ [1,2], [3,4] ], dtype=complex )
>>> c
array([[ 1.+0.j,  2.+0.j],
       [ 3.+0.j,  4.+0.j]])
로그인 후 복사

특수 행렬 만들기

>>> np.zeros( (3,4) )
array([[ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.]])
>>> np.ones( (2,3,4), dtype=np.int16 )                # dtype can also be specified
array([[[ 1, 1, 1, 1],
        [ 1, 1, 1, 1],
        [ 1, 1, 1, 1]],
       [[ 1, 1, 1, 1],
        [ 1, 1, 1, 1],
        [ 1, 1, 1, 1]]], dtype=int16)
>>> np.empty( (2,3) )                                 # uninitialized, output may vary
array([[  3.73603959e-262,   6.02658058e-154,   6.55490914e-260],
       [  5.30498948e-313,   3.14673309e-307,   1.00000000e+000]])
로그인 후 복사

특정 규칙이 있는 행렬 만들기

>>> np.arange( 10, 30, 5 )
array([10, 15, 20, 25])
>>> np.arange( 0, 2, 0.3 )                 # it accepts float arguments
array([ 0. ,  0.3,  0.6,  0.9,  1.2,  1.5,  1.8])
>>> from numpy import pi
>>> np.linspace( 0, 2, 9 )                 # 9 numbers from 0 to 2
array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ,  1.25,  1.5 ,  1.75,  2.  ])
>>> x = np.linspace( 0, 2*pi, 100 )        # useful to evaluate function at lots of points
>>> f = np.sin(x)
로그인 후 복사

기본 연산

덧셈, 뺄셈, 곱셈 그리고 삼각형의 나눗셈 기능적 논리 연산

>>> a = np.array( [20,30,40,50] )
>>> b = np.arange( 4 )
>>> b
array([0, 1, 2, 3])
>>> c = a-b
>>> c
array([20, 29, 38, 47])
>>> b**2
array([0, 1, 4, 9])
>>> 10*np.sin(a)
array([ 9.12945251, -9.88031624,  7.4511316 , -2.62374854])
>>> a<35
array([ True, True, False, False], dtype=bool)
로그인 후 복사

행렬 연산

matlab에는 .*,./ 등이 있습니다

하지만 numpy에서는 +, -, ×, /를 사용하면 덧셈을 수행하는 것이 우선이고, 각 점 사이의 뺄셈, 곱셈, 나눗셈

두 개의 행렬(정사각형 행렬)이 요소 간의 연산을 수행하고 행렬 연산을 수행할 수 있다면 요소 간의 연산이 먼저 수행됩니다

>>> import numpy as np
>>> A = np.arange(10,20)
>>> B = np.arange(20,30)
>>> A + B
array([30, 32, 34, 36, 38, 40, 42, 44, 46, 48])
>>> A * B
array([200, 231, 264, 299, 336, 375, 416, 459, 504, 551])
>>> A / B
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
>>> B / A
array([2, 1, 1, 1, 1, 1, 1, 1, 1, 1])
로그인 후 복사

행렬 연산을 수행해야 하는 경우 일반적으로 행렬입니다. 곱셈

>>> A = np.array([1,1,1,1])
>>> B = np.array([2,2,2,2])
>>> A.reshape(2,2)
array([[1, 1],
       [1, 1]])
>>> B.reshape(2,2)
array([[2, 2],
       [2, 2]])
>>> A * B
array([2, 2, 2, 2])
>>> np.dot(A,B)
8
>>> A.dot(B)
8
로그인 후 복사

일반적으로 사용되는 전역 함수

>>> B = np.arange(3)
>>> B
array([0, 1, 2])
>>> np.exp(B)
array([ 1.        ,  2.71828183,  7.3890561 ])
>>> np.sqrt(B)
array([ 0.        ,  1.        ,  1.41421356])
>>> C = np.array([2., -1., 4.])
>>> np.add(B, C)
array([ 2.,  0.,  6.])
로그인 후 복사

행렬 인덱스 슬라이스 탐색

>>> a = np.arange(10)**3
>>> a
array([  0,   1,   8,  27,  64, 125, 216, 343, 512, 729])
>>> a[2]
8
>>> a[2:5]
array([ 8, 27, 64])
>>> a[:6:2] = -1000    # equivalent to a[0:6:2] = -1000; from start to position 6, exclusive, set every 2nd element to -1000
>>> a
array([-1000,     1, -1000,    27, -1000,   125,   216,   343,   512,   729])
>>> a[ : :-1]                                 # reversed a
array([  729,   512,   343,   216,   125, -1000,    27, -1000,     1, -1000])
>>> for i in a:
...     print(i**(1/3.))
...
nan
1.0
nan
3.0
nan
5.0
6.0
7.0
8.0
9.0
로그인 후 복사

행렬 탐색

>>> import numpy as np
>>> b = np.arange(16).reshape(4, 4)
>>> for row in b:
...  print(row)
... 
[0 1 2 3]
[4 5 6 7]
[ 8  9 10 11]
[12 13 14 15]
>>> for node in b.flat:
...  print(node)
... 
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
로그인 후 복사

행렬의 특수 연산

행렬 모양 변경--reshape

>>> a = np.floor(10 * np.random.random((3,4)))
>>> a
array([[ 6.,  5.,  1.,  5.],
       [ 5.,  5.,  8.,  9.],
       [ 5.,  5.,  9.,  7.]])
>>> a.ravel()
array([ 6.,  5.,  1.,  5.,  5.,  5.,  8.,  9.,  5.,  5.,  9.,  7.])
>>> a
array([[ 6.,  5.,  1.,  5.],
       [ 5.,  5.,  8.,  9.],
       [ 5.,  5.,  9.,  7.]])
로그인 후 복사

크기 조정과 모양 변경의 차이

크기 조정은 원래 행렬을 변경하고 모양을 변경하면

>>> a
array([[ 6.,  5.,  1.,  5.],
       [ 5.,  5.,  8.,  9.],
       [ 5.,  5.,  9.,  7.]])
>>> a.reshape(2,-1)
array([[ 6.,  5.,  1.,  5.,  5.,  5.],
       [ 8.,  9.,  5.,  5.,  9.,  7.]])
>>> a
array([[ 6.,  5.,  1.,  5.],
       [ 5.,  5.,  8.,  9.],
       [ 5.,  5.,  9.,  7.]])
>>> a.resize(2,6)
>>> a
array([[ 6.,  5.,  1.,  5.,  5.,  5.],
       [ 8.,  9.,  5.,  5.,  9.,  7.]])
로그인 후 복사

행렬을 병합

>>> a = np.floor(10*np.random.random((2,2)))
>>> a
array([[ 8.,  8.],
       [ 0.,  0.]])
>>> b = np.floor(10*np.random.random((2,2)))
>>> b
array([[ 1.,  8.],
       [ 0.,  4.]])
>>> np.vstack((a,b))
array([[ 8.,  8.],
       [ 0.,  0.],
       [ 1.,  8.],
       [ 0.,  4.]])
>>> np.hstack((a,b))
array([[ 8.,  8.,  1.,  8.],
       [ 0.,  0.,  0.,  4.]])
로그인 후 복사
하지 않습니다.

위 내용은 NumPy의 일반적인 메소드 요약의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

numpy 버전을 빠르게 확인하는 방법 numpy 버전을 빠르게 확인하는 방법 Jan 19, 2024 am 08:23 AM

Numpy는 Python의 중요한 수학 라이브러리로 효율적인 배열 연산과 과학적인 계산 기능을 제공하며 데이터 분석, 기계 학습, 딥 러닝 및 기타 분야에서 널리 사용됩니다. numpy를 사용할 때, 현재 환경에서 지원하는 기능을 확인하기 위해 numpy의 버전 번호를 확인해야 하는 경우가 많습니다. 이 기사에서는 numpy 버전을 빠르게 확인하는 방법을 소개하고 구체적인 코드 예제를 제공합니다. 방법 1: numpy와 함께 제공되는 __version__ 속성을 사용하세요. numpy 모듈은 __과 함께 제공됩니다.

numpy 버전 업그레이드: 상세하고 따라하기 쉬운 가이드 numpy 버전 업그레이드: 상세하고 따라하기 쉬운 가이드 Feb 25, 2024 pm 11:39 PM

numpy 버전 업그레이드 방법: 따라하기 쉬운 튜토리얼, 구체적인 코드 예제 필요 소개: NumPy는 과학 컴퓨팅에 사용되는 중요한 Python 라이브러리입니다. 효율적인 수치 연산을 수행하는 데 사용할 수 있는 강력한 다차원 배열 객체와 일련의 관련 함수를 제공합니다. 새 버전이 출시되면 새로운 기능과 버그 수정이 지속적으로 제공됩니다. 이 문서에서는 설치된 NumPy 라이브러리를 업그레이드하여 최신 기능을 얻고 알려진 문제를 해결하는 방법을 설명합니다. 1단계: 처음에 현재 NumPy 버전을 확인하세요.

PyCharm에 NumPy를 설치하고 해당 기능을 최대한 활용하는 방법에 대한 단계별 가이드 PyCharm에 NumPy를 설치하고 해당 기능을 최대한 활용하는 방법에 대한 단계별 가이드 Feb 18, 2024 pm 06:38 PM

PyCharm에 NumPy를 설치하고 그 강력한 기능을 최대한 활용하는 방법을 단계별로 가르쳐주세요. 머리말: NumPy는 Python의 과학 컴퓨팅을 위한 기본 라이브러리 중 하나이며 수행에 필요한 다양한 기능을 제공합니다. 배열의 기본 작업. 이는 대부분의 데이터 과학 및 기계 학습 프로젝트에서 중요한 부분입니다. 이 기사에서는 PyCharm에 NumPy를 설치하는 방법을 소개하고 특정 코드 예제를 통해 NumPy의 강력한 기능을 보여줍니다. 1단계: 먼저 PyCharm을 설치합니다.

NumPy 라이브러리를 빠르게 제거하는 비밀 방법을 알아보세요. NumPy 라이브러리를 빠르게 제거하는 비밀 방법을 알아보세요. Jan 26, 2024 am 08:32 AM

NumPy 라이브러리를 빠르게 제거하는 방법의 비밀이 밝혀집니다. NumPy는 데이터 분석, 과학 컴퓨팅 및 기계 학습과 같은 분야에서 널리 사용되는 강력한 Python 과학 컴퓨팅 라이브러리입니다. 그러나 때로는 버전 업데이트나 다른 이유로 NumPy 라이브러리를 제거해야 할 수도 있습니다. 이 기사에서는 NumPy 라이브러리를 빠르게 제거하는 몇 가지 방법을 소개하고 특정 코드 예제를 제공합니다. 방법 1: pip를 사용하여 제거 pip는 설치, 업그레이드 및 설치에 사용할 수 있는 Python 패키지 관리 도구입니다.

Numpy 설치 가이드: 한 기사로 설치 문제 해결 Numpy 설치 가이드: 한 기사로 설치 문제 해결 Feb 21, 2024 pm 08:15 PM

Numpy 설치 가이드: 설치 문제를 해결하려면 특정 코드 예제가 필요합니다. 소개: Numpy는 Python의 강력한 과학 컴퓨팅 라이브러리로, 배열 데이터를 운영하기 위한 효율적인 다차원 배열 객체와 도구를 제공합니다. 그러나 초보자의 경우 Numpy를 설치하면 약간의 혼란이 발생할 수 있습니다. 이 기사에서는 설치 문제를 신속하게 해결하는 데 도움이 되는 Numpy 설치 가이드를 제공합니다. 1. Python 환경 설치: Numpy를 설치하기 전에 먼저 Py가 설치되어 있는지 확인해야 합니다.

충돌과 오류를 방지하기 위해 NumPy 라이브러리 제거 가이드 충돌과 오류를 방지하기 위해 NumPy 라이브러리 제거 가이드 Jan 26, 2024 am 10:22 AM

NumPy 라이브러리는 과학 컴퓨팅 및 데이터 분석을 위한 Python의 중요한 라이브러리 중 하나입니다. 그러나 때로는 버전을 업그레이드하거나 다른 라이브러리와의 충돌을 해결해야 하기 때문에 NumPy 라이브러리를 제거해야 할 수도 있습니다. 이 기사에서는 충돌과 오류를 방지하기 위해 NumPy 라이브러리를 올바르게 제거하는 방법을 독자에게 소개하고 특정 코드 예제를 통해 작업 프로세스를 보여줍니다. NumPy 라이브러리 제거를 시작하기 전에 pip 도구가 설치되어 있는지 확인해야 합니다. pip는 Python용 패키지 관리 도구이기 때문입니다.

Numpy 버전 선택 가이드: 왜 업그레이드해야 할까요? Numpy 버전 선택 가이드: 왜 업그레이드해야 할까요? Jan 19, 2024 am 09:34 AM

데이터 과학, 머신러닝, 딥러닝 등 분야의 급속한 발전으로 Python은 데이터 분석 및 모델링을 위한 주류 언어가 되었습니다. Python에서 NumPy(NumericalPython의 약어)는 효율적인 다차원 배열 객체 세트를 제공하고 pandas, SciPy 및 scikit-learn과 같은 다른 많은 라이브러리의 기초이기 때문에 매우 중요한 라이브러리입니다. NumPy를 사용하는 과정에서 서로 다른 버전 간의 호환성 문제가 발생할 수 있습니다.

numpy 슬라이싱 작업에 대한 심층 분석 및 실제 전투 적용 numpy 슬라이싱 작업에 대한 심층 분석 및 실제 전투 적용 Jan 26, 2024 am 08:52 AM

Numpy 슬라이싱 작업 방법에 대한 자세한 설명 및 실제 적용 가이드 소개: Numpy는 Python에서 가장 널리 사용되는 과학 컴퓨팅 라이브러리 중 하나이며 강력한 배열 작업 기능을 제공합니다. 그 중 슬라이싱 연산은 Numpy에서 흔히 사용되는 강력한 기능 중 하나입니다. 이번 글에서는 NumPy의 슬라이싱 작업 방법을 자세히 소개하고, 실제 적용 가이드를 통해 슬라이싱 작업의 구체적인 사용법을 보여드리겠습니다. 1. Numpy 슬라이싱 연산 방법 소개 Numpy 슬라이싱 연산은 인덱스 간격을 지정하여 배열의 하위 집합을 얻는 것을 말합니다. 기본 형태는 다음과 같습니다.

See all articles