다음 편집기는 Python 모듈의 sys 모듈 및 직렬화 모듈에 대한 기사를 제공합니다(예제 설명). 편집자님이 꽤 좋다고 생각하셔서 지금 공유하고 모두에게 참고용으로 드리고자 합니다. 와서 저와 함께 살펴보세요
sys 모듈
sys 모듈은 Python 인터프리터
sys.argv 命令行参数List,第一个元素是程序本身路径 sys.exit(n) 退出程序,正常退出时exit(0),错误退出sys.exit(1) sys.version 获取Python解释程序的版本信息 sys.path 返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值 sys.platform 返回操作系统平台名称
직렬화 모듈
직렬화의 목적:
만들기 어떤 형태로든 저장소에 영구적인 사용자 정의 개체
한 곳에서 다른 곳으로 개체 전달
프로그램을 더 쉽게 유지 관리할 수 있도록 만들기
json
# Json模块提供了四个功能:dumps、dump、loads、load import json dic = {'k1':'v1','k2':'v2','k3':'v3'} str_dic = json.dumps(dic) #序列化:将一个字典转换成一个字符串 print(type(str_dic),str_dic) #<class 'str'> {"k3": "v3", "k1": "v1", "k2": "v2"} #注意,json转换完的字符串类型的字典中的字符串是由""表示的 dic2 = json.loads(str_dic) #反序列化:将一个字符串格式的字典转换成一个字典 #注意,要用json的loads功能处理的字符串类型的字典中的字符串必须由""表示 print(type(dic2),dic2) #<class 'dict'> {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'} list_dic = [1,['a','b','c'],3,{'k1':'v1','k2':'v2'}] str_dic = json.dumps(list_dic) #也可以处理嵌套的数据类型 print(type(str_dic),str_dic) #<class 'str'> [1, ["a", "b", "c"], 3, {"k1": "v1", "k2": "v2"}] list_dic2 = json.loads(str_dic) print(type(list_dic2),list_dic2) #<class 'list'> [1, ['a', 'b', 'c'], 3, {'k1': 'v1', 'k2': 'v2'}]
import json f = open('json_file','w') dic = {'k1':'v1','k2':'v2','k3':'v3'} json.dump(dic,f) #dump方法接收一个文件句柄,直接将字典转换成json字符串写入文件 f.close() f = open('json_file') dic2 = json.load(f) #load方法接收一个文件句柄,直接将文件中的json字符串转换成数据结构返回 f.close() print(type(dic2),dic2)
import json f = open('file','w') json.dump({'国籍':'中国'},f) ret = json.dumps({'国籍':'中国'}) f.write(ret+'\n') json.dump({'国籍':'美国'},f,ensure_ascii=False) ret = json.dumps({'国籍':'美国'},ensure_ascii=False) f.write(ret+'\n') f.close() ensure_ascii关键字参数
pickle
json & pickle
json, 문자열과 Python 데이터 유형 간 변환에 사용됨
pickle, Python 특정 유형과 Python 데이터 유형 간 변환에 사용됨
# pickle模块提供了四个功能:dumps、dump(序列化,存)、loads(反序列化,读)、load (不仅可以序列化字典,列表...可以把python中任意的数据类型序列化 import pickle dic = {'k1':'v1','k2':'v2','k3':'v3'} str_dic = pickle.dumps(dic) print(str_dic) #一串二进制内容 dic2 = pickle.loads(str_dic) print(dic2) #字典 import time struct_time = time.localtime(1000000000) print(struct_time) f = open('pickle_file','wb') pickle.dump(struct_time,f) f.close() f = open('pickle_file','rb') struct_time2 = pickle.load(f) print(struct_time2.tm_year)
shelve
# shelve也是python提供给我们的序列化工具,比pickle用起来更简单一些。 # shelve只提供给我们一个open方法,是用key来访问的,使用起来和字典类似。 import shelve f = shelve.open('shelve_file') f['key'] = {'int':10, 'float':9.5, 'string':'Sample data'} #直接对文件句柄操作,就可以存入数据 f.close() import shelve f1 = shelve.open('shelve_file') existing = f1['key'] #取出数据的时候也只需要直接用key获取即可,但是如果key不存在会报错 f1.close() print(existing)
# 这个模块有个限制,它不支持多个应用同一时间往同一个DB进行写操作。所以当我们知道我们的应用如果只进行读操作,我们可以让shelve通过只读方式打开DB import shelve f = shelve.open('shelve_file', flag='r') existing = f['key'] f.close() print(existing)
# 由于shelve在默认情况下是不会记录待持久化对象的任何修改的,所以我们在shelve.open()时候需要修改默认参数,否则对象的修改不会保存。 import shelve f1 = shelve.open('shelve_file') print(f1['key']) f1['key']['new_value'] = 'this was not here before' f1.close() f2 = shelve.open('shelve_file', writeback=True) print(f2['key']) f2['key']['new_value'] = 'this was not here before' f2.close() """ writeback方式有优点也有缺点。优点是减少了我们出错的概率,并且让对象的持久化对用户更加的透明了;但这种方式并不是所有的情况下都需要,首先,使用writeback以后,shelf在open()的时候会增加额外的内存消耗,并且当DB在close()的时候会将缓存中的每一个对象都写入到DB,这也会带来额外的等待时间。因为shelve没有办法知道缓存中哪些对象修改了,哪些对象没有修改,因此所有的对象都会被写入。 """
위 내용은 Python 모듈 sys 모듈 및 직렬화 모듈의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!