물리학에서 이중 스프링 질량 에너지 시스템을 해결하기 위한 Python 코드 예제
이 글은 물리학에서 이중 스프링 질량 에너지 시스템을 해결하기 위해 Python을 사용하는 방법에 대한 관련 정보를 주로 소개합니다. 이 글은 모든 사람의 학습이나 작업에 대한 특정 참고 학습 가치를 제공합니다. 친구가 필요하고, 편집자를 따라가서 함께 배워보세요.
머리말
이 글은 물리학에서 이중 스프링 질량 에너지 시스템을 해결하기 위해 Python을 사용하는 것과 관련된 내용을 주로 소개하며, 참고 및 연구를 위해 공유합니다. 아래에서는 많은 말을 하지 않겠습니다. , 세부 사항을 살펴 보겠습니다.
물리적 모델은 다음과 같습니다:
이 시스템에는 두 개의 물체가 있으며, 질량은 각각 m1과 m2이고 두 개의 스프링으로 서로 연결되어 있으며 망원경 시스템은 k1과 k2이며 왼쪽 끝입니다. 결정된. 외력이 없다고 가정하면 두 스프링의 길이는 L1과 L2입니다.
두 물체에는 중력이 있으므로 평면에 마찰이 생기고 마찰계수는 각각 b1과 b2가 됩니다. 따라서 다음과 같이 미분방정식을 작성할 수 있습니다.
이것은 2차 미분방정식입니다. 이를 Python을 사용하여 풀려면 1차 미분방정식으로 변환해야 합니다. 따라서 다음 두 가지 변수가 도입됩니다.
이 두 변수는 이동 속도와 동일합니다. 연산을 통해 이렇게 바꿀 수 있습니다:
이때 선형방정식을 벡터배열로 바꿀 수 있고, 파이썬을 이용해 정의할 수 있습니다.
코드는 다음과 같습니다.
# Use ODEINT to solve the differential equations defined by the vector field from scipy.integrate import odeint def vectorfield(w, t, p): """ Defines the differential equations for the coupled spring-mass system. Arguments: w : vector of the state variables: w = [x1,y1,x2,y2] t : time p : vector of the parameters: p = [m1,m2,k1,k2,L1,L2,b1,b2] """ x1, y1, x2, y2 = w m1, m2, k1, k2, L1, L2, b1, b2 = p # Create f = (x1',y1',x2',y2'): f = [y1, (-b1 * y1 - k1 * (x1 - L1) + k2 * (x2 - x1 - L2)) / m1, y2, (-b2 * y2 - k2 * (x2 - x1 - L2)) / m2] return f # Parameter values # Masses: m1 = 1.0 m2 = 1.5 # Spring constants k1 = 8.0 k2 = 40.0 # Natural lengths L1 = 0.5 L2 = 1.0 # Friction coefficients b1 = 0.8 b2 = 0.5 # Initial conditions # x1 and x2 are the initial displacements; y1 and y2 are the initial velocities x1 = 0.5 y1 = 0.0 x2 = 2.25 y2 = 0.0 # ODE solver parameters abserr = 1.0e-8 relerr = 1.0e-6 stoptime = 10.0 numpoints = 250 # Create the time samples for the output of the ODE solver. # I use a large number of points, only because I want to make # a plot of the solution that looks nice. t = [stoptime * float(i) / (numpoints - 1) for i in range(numpoints)] # Pack up the parameters and initial conditions: p = [m1, m2, k1, k2, L1, L2, b1, b2] w0 = [x1, y1, x2, y2] # Call the ODE solver. wsol = odeint(vectorfield, w0, t, args=(p,), atol=abserr, rtol=relerr) with open('two_springs.dat', 'w') as f: # Print & save the solution. for t1, w1 in zip(t, wsol): out = '{0} {1} {2} {3} {4}\n'.format(t1, w1[0], w1[1], w1[2], w1[3]); print(out) f.write(out);
여기에 결과를 출력합니다. two_springs.dat 파일로 가서 데이터를 그림으로 표시하는 프로그램을 작성하면 코드는 다음과 같습니다.
# Plot the solution that was generated from numpy import loadtxt from pylab import figure, plot, xlabel, grid, hold, legend, title, savefig from matplotlib.font_manager import FontProperties t, x1, xy, x2, y2 = loadtxt('two_springs.dat', unpack=True) figure(1, figsize=(6, 4.5)) xlabel('t') grid(True) lw = 1 plot(t, x1, 'b', linewidth=lw) plot(t, x2, 'g', linewidth=lw) legend((r'$x_1$', r'$x_2$'), prop=FontProperties(size=16)) title('Mass Displacements for the\nCoupled Spring-Mass System') savefig('two_springs.png', dpi=100)
마지막으로, 다음과 같이 출력된 png 그림을 확인해 보겠습니다.
요약
위 내용은 물리학에서 이중 스프링 질량 에너지 시스템을 해결하기 위한 Python 코드 예제의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











PHP와 Python은 고유 한 장점과 단점이 있으며 선택은 프로젝트 요구와 개인 선호도에 달려 있습니다. 1.PHP는 대규모 웹 애플리케이션의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 데이터 과학 및 기계 학습 분야를 지배합니다.

Python과 JavaScript는 커뮤니티, 라이브러리 및 리소스 측면에서 고유 한 장점과 단점이 있습니다. 1) Python 커뮤니티는 친절하고 초보자에게 적합하지만 프론트 엔드 개발 리소스는 JavaScript만큼 풍부하지 않습니다. 2) Python은 데이터 과학 및 기계 학습 라이브러리에서 강력하며 JavaScript는 프론트 엔드 개발 라이브러리 및 프레임 워크에서 더 좋습니다. 3) 둘 다 풍부한 학습 리소스를 가지고 있지만 Python은 공식 문서로 시작하는 데 적합하지만 JavaScript는 MDNWebDocs에서 더 좋습니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

CentOS 시스템에서 Pytorch GPU 가속도를 활성화하려면 Cuda, Cudnn 및 GPU 버전의 Pytorch를 설치해야합니다. 다음 단계는 프로세스를 안내합니다. CUDA 및 CUDNN 설치 CUDA 버전 호환성 결정 : NVIDIA-SMI 명령을 사용하여 NVIDIA 그래픽 카드에서 지원하는 CUDA 버전을보십시오. 예를 들어, MX450 그래픽 카드는 CUDA11.1 이상을 지원할 수 있습니다. Cudatoolkit 다운로드 및 설치 : NVIDIACUDATOOLKIT의 공식 웹 사이트를 방문하여 그래픽 카드에서 지원하는 가장 높은 CUDA 버전에 따라 해당 버전을 다운로드하여 설치하십시오. CUDNN 라이브러리 설치 :

Docker는 Linux 커널 기능을 사용하여 효율적이고 고립 된 응용 프로그램 실행 환경을 제공합니다. 작동 원리는 다음과 같습니다. 1. 거울은 읽기 전용 템플릿으로 사용되며, 여기에는 응용 프로그램을 실행하는 데 필요한 모든 것을 포함합니다. 2. Union 파일 시스템 (Unionfs)은 여러 파일 시스템을 스택하고 차이점 만 저장하고 공간을 절약하고 속도를 높입니다. 3. 데몬은 거울과 컨테이너를 관리하고 클라이언트는 상호 작용을 위해 사용합니다. 4. 네임 스페이스 및 CGroup은 컨테이너 격리 및 자원 제한을 구현합니다. 5. 다중 네트워크 모드는 컨테이너 상호 연결을 지원합니다. 이러한 핵심 개념을 이해 함으로써만 Docker를 더 잘 활용할 수 있습니다.

Minio Object Storage : Centos System Minio 하의 고성능 배포는 Go Language를 기반으로 개발 한 고성능 분산 객체 저장 시스템입니다. Amazons3과 호환됩니다. Java, Python, JavaScript 및 Go를 포함한 다양한 클라이언트 언어를 지원합니다. 이 기사는 CentOS 시스템에 대한 Minio의 설치 및 호환성을 간단히 소개합니다. CentOS 버전 호환성 Minio는 다음을 포함하되 이에 국한되지 않는 여러 CentOS 버전에서 확인되었습니다. CentOS7.9 : 클러스터 구성, 환경 준비, 구성 파일 설정, 디스크 파티셔닝 및 미니를 다루는 완전한 설치 안내서를 제공합니다.

CentOS 시스템에 대한 Pytorch 분산 교육에는 다음 단계가 필요합니다. Pytorch 설치 : 전제는 Python과 PIP가 CentOS 시스템에 설치된다는 것입니다. CUDA 버전에 따라 Pytorch 공식 웹 사이트에서 적절한 설치 명령을 받으십시오. CPU 전용 교육의 경우 다음 명령을 사용할 수 있습니다. PipinStalltorchtorchvisiontorchaudio GPU 지원이 필요한 경우 CUDA 및 CUDNN의 해당 버전이 설치되어 있는지 확인하고 해당 PyTorch 버전을 설치하려면 설치하십시오. 분산 환경 구성 : 분산 교육에는 일반적으로 여러 기계 또는 단일 기계 다중 GPU가 필요합니다. 장소

CentOS 시스템에 Pytorch를 설치할 때는 적절한 버전을 신중하게 선택하고 다음 주요 요소를 고려해야합니다. 1. 시스템 환경 호환성 : 운영 체제 : CentOS7 이상을 사용하는 것이 좋습니다. Cuda 및 Cudnn : Pytorch 버전 및 Cuda 버전은 밀접하게 관련되어 있습니다. 예를 들어, pytorch1.9.0은 cuda11.1을 필요로하고 Pytorch2.0.1은 cuda11.3을 필요로합니다. CUDNN 버전도 CUDA 버전과 일치해야합니다. Pytorch 버전을 선택하기 전에 호환 CUDA 및 CUDNN 버전이 설치되었는지 확인하십시오. 파이썬 버전 : Pytorch 공식 지점

Centos의 최신 버전으로 Pytorch를 업데이트하면 다음 단계를 수행 할 수 있습니다. 방법 1 : PIP를 사용하여 PIP 업데이트 : 먼저 PIP의 PIP 버전이 최신 버전의 PyTorch를 제대로 설치하지 못할 수 있기 때문에 PIP가 최신 버전인지 확인하십시오. PipinStall-UpgradePip Unin Incalls of Pytorch (설치된 경우) : PipuninStalltorchtorchvisiontorchaudio 설치 최신 정보
