Java java지도 시간 Java에서 최단 경로 알고리즘을 위한 Dijkstra 알고리즘 구현

Java에서 최단 경로 알고리즘을 위한 Dijkstra 알고리즘 구현

Oct 13, 2017 am 10:29 AM
java 연산

이 글에서는 주로 Java에서 최단 경로 알고리즘을 구현한 Dijkstra 알고리즘을 소개합니다. Dijkstra 알고리즘은 단일 시작 전체 경로 알고리즘입니다.

머리말

Dijkstra의 알고리즘은 잘 알려진 최단 경로 알고리즘이며 단일 시작 전체 경로 알고리즘입니다. 이 알고리즘은 '탐욕 알고리즘'의 성공적인 사례라고 불린다. 이 기사에서는 가장 널리 사용되는 언어로 이 훌륭한 알고리즘을 소개하고 Java 구현 코드를 제공하려고 합니다.

1. 지식 준비:

1. 그래프를 나타내는 데이터 구조

이 알고리즘에서는 저자가 인접 행렬을 사용합니다.

그래프의 인접 행렬 저장 방법은 두 개의 배열을 사용하여 그래프를 표현하는 것입니다. 1차원 배열은 그래프에 정점 정보를 저장하고, 2차원 배열(인접 행렬)은 그래프에 모서리 또는 호 정보를 저장합니다.

그래프 G에 n개의 정점이 있다고 가정하면 인접 행렬은 다음과 같이 정의되는 n*n 정사각형 행렬입니다.

위에서 볼 수 있듯이 무향 그래프의 가장자리 배열은 대칭 행렬입니다. 소위 대칭 행렬은 n차 행렬의 요소가 aij = aji를 충족한다는 것을 의미합니다. 즉, 행렬의 왼쪽 위 모서리부터 오른쪽 아래 모서리까지의 주대각선이 축이고, 오른쪽 위 모서리에 있는 요소와 왼쪽 아래 모서리에 해당하는 요소가 모두 동일합니다.

이 매트릭스를 통해 사진 속 정보를 쉽게 알 수 있습니다.

(1) 두 정점에 가장자리가 있는지 없는지 확인하는 것은 매우 쉽습니다.

(2) 특정 정점의 차수를 아는 것은 실제로 정점 vi가 i번째 행에 있거나 또는 (i번째 열) 인접 행렬의 요소인 out-degree와 out-degree의 합, 정점 vi의 in-degree는 1이며, 이는 정확히 i번째 열에 있는 숫자의 합입니다. 정점 vi의 진출 차수는 2이며, 이는 i번째 행에 있는 숫자의 합입니다.

유향 그래프의 정의도 비슷하므로 자세한 내용은 다루지 않겠습니다.

2. 단일 시작점 전체 경로

소위 단일 시작점 전체 경로는 시작점에서 시작하여 그래프의 모든 노드까지의 최단 경로를 말합니다.

3. 그래프 이론의 기본 지식(관련 정보는 독자가 직접 찾아야 함)

4. 보완 완화 조건

스칼라 d1, d2,...,dN이 dj< =di + aij, (i, j)는 A,

에 속하며 P는 i1이 시작점이고 ik가 끝점인 도로입니다.

dj = di + aij이면 모든 측면에 적용됩니다(i, j) P의 다음 P i1에서 ik까지의 최단 경로입니다. 그 중에서 위의 두 방정식을 만족하는 최단경로 문제의 상보적 완화조건을 호칭한다.

2. 알고리즘 아이디어

1. G = (V, E)를 가중 무방향 그래프로 둡니다. G에 두 개의 인접한 노드가 있는 경우 i와 j입니다. aij(여기서부터 나중에 아래 첨자로 표현됨)는 노드 i에서 노드 j까지의 가중치이며, 이 알고리즘에서는 거리로 이해될 수 있습니다. 각 노드에는 시작점에서 특정 경로까지의 거리를 나타내는 di(노드 라벨) 값이 있습니다. 2. 알고리즘에는 처음에 방문하지 않은 노드 목록을 저장하는 데 사용되는 배열 V가 있으며, 이를 일시적으로 후보 목록이라고 합니다. 시작 노드로 노드 1을 선택합니다. 처음에는 노드 1의 경우 d1=0이고 다른 노드의 경우 di=무한대이며 V는 모든 노드입니다. 조건을 초기화한 후 반복 알고리즘을 시작하고 V가 공집합이 되면 중지합니다. 구체적인 반복 단계는 다음과 같습니다.

후보 목록에서 d 값이 가장 작은 노드 di를 제거합니다. (이 예에서 V의 데이터 구조는 우선순위 큐를 사용하여 최소값 dequeue를 구현합니다. 이전 기사에서 소개한 Fibonacci 쌍을 사용하는 것이 가장 좋으며 성능이 크게 향상됩니다.) V가 제거된 노드를 제외하고 이 노드에서 시작하는 모든 간선에 대해 (i, j)는 A에 속합니다. dj > di + aij(완화 조건 위반)이면

dj = di + aij , ( j가 V에서 제거된 경우 이는 최소 거리가 계산되었으며 이 계산에 참여하지 않는다는 의미입니다.)


알고리즘의 운영 엔지니어링에서 노드의 d 값이 단조롭게 증가하지 않는 것을 볼 수 있습니다

구체적인 알고리즘 다이어그램은 다음과 같습니다

 

3. Java 코드 구현

public class Vertex implements Comparable<Vertex>{

  /**
   * 节点名称(A,B,C,D)
   */
  private String name;
  
  /**
   * 最短路径长度
   */
  private int path;
  
  /**
   * 节点是否已经出列(是否已经处理完毕)
   */
  private boolean isMarked;
  
  public Vertex(String name){
    this.name = name;
    this.path = Integer.MAX_VALUE; //初始设置为无穷大
    this.setMarked(false);
  }
  
  public Vertex(String name, int path){
    this.name = name;
    this.path = path;
    this.setMarked(false);
  }
  
  @Override
  public int compareTo(Vertex o) {
    return o.path > path?-1:1;
  }
}
로그인 후 복사

public class Graph {

  /*
   * 顶点
   */
  private List<Vertex> vertexs;

  /*
   * 边
   */
  private int[][] edges;

  /*
   * 没有访问的顶点
   */
  private Queue<Vertex> unVisited;

  public Graph(List<Vertex> vertexs, int[][] edges) {
    this.vertexs = vertexs;
    this.edges = edges;
    initUnVisited();
  }
  
  /*
   * 搜索各顶点最短路径
   */
  public void search(){
    while(!unVisited.isEmpty()){
      Vertex vertex = unVisited.element();
      //顶点已经计算出最短路径,设置为"已访问"
       vertex.setMarked(true);  
      //获取所有"未访问"的邻居
        List<Vertex> neighbors = getNeighbors(vertex);  
      //更新邻居的最短路径
      updatesDistance(vertex, neighbors);    
      pop();
    }
    System.out.println("search over");
  }
  
  /*
   * 更新所有邻居的最短路径
   */
  private void updatesDistance(Vertex vertex, List<Vertex> neighbors){
    for(Vertex neighbor: neighbors){
      updateDistance(vertex, neighbor);
    }
  }
  
  /*
   * 更新邻居的最短路径
   */
  private void updateDistance(Vertex vertex, Vertex neighbor){
    int distance = getDistance(vertex, neighbor) + vertex.getPath();
    if(distance < neighbor.getPath()){
      neighbor.setPath(distance);
    }
  }

  /*
   * 初始化未访问顶点集合
   */
  private void initUnVisited() {
    unVisited = new PriorityQueue<Vertex>();
    for (Vertex v : vertexs) {
      unVisited.add(v);
    }
  }

  /*
   * 从未访问顶点集合中删除已找到最短路径的节点
   */
  private void pop() {
    unVisited.poll();
  }

  /*
   * 获取顶点到目标顶点的距离
   */
  private int getDistance(Vertex source, Vertex destination) {
    int sourceIndex = vertexs.indexOf(source);
    int destIndex = vertexs.indexOf(destination);
    return edges[sourceIndex][destIndex];
  }

  /*
   * 获取顶点所有(未访问的)邻居
   */
  private List<Vertex> getNeighbors(Vertex v) {
    List<Vertex> neighbors = new ArrayList<Vertex>();
    int position = vertexs.indexOf(v);
    Vertex neighbor = null;
    int distance;
    for (int i = 0; i < vertexs.size(); i++) {
      if (i == position) {
        //顶点本身,跳过
        continue;
      }
      distance = edges[position][i];  //到所有顶点的距离
      if (distance < Integer.MAX_VALUE) {
        //是邻居(有路径可达)
        neighbor = getVertex(i);
        if (!neighbor.isMarked()) {
          //如果邻居没有访问过,则加入list;
          neighbors.add(neighbor);
        }
      }
    }
    return neighbors;
  }

  /*
   * 根据顶点位置获取顶点
   */
  private Vertex getVertex(int index) {
    return vertexs.get(index);
  }

  /*
   * 打印图
   */
  public void printGraph() {
    int verNums = vertexs.size();
    for (int row = 0; row < verNums; row++) {
      for (int col = 0; col < verNums; col++) {
        if(Integer.MAX_VALUE == edges[row][col]){
          System.out.print("X");
          System.out.print(" ");
          continue;
        }
        System.out.print(edges[row][col]);
        System.out.print(" ");
      }
      System.out.println();
    }
  }
}
로그인 후 복사


public class Test {

  public static void main(String[] args){
    List<Vertex> vertexs = new ArrayList<Vertex>();
    Vertex a = new Vertex("A", 0);
    Vertex b = new Vertex("B");
    Vertex c = new Vertex("C");
    Vertex d = new Vertex("D");
    Vertex e = new Vertex("E");
    Vertex f = new Vertex("F");
    vertexs.add(a);
    vertexs.add(b);
    vertexs.add(c);
    vertexs.add(d);
    vertexs.add(e);
    vertexs.add(f);
    int[][] edges = {
        {Integer.MAX_VALUE,6,3,Integer.MAX_VALUE,Integer.MAX_VALUE,Integer.MAX_VALUE},
        {6,Integer.MAX_VALUE,2,5,Integer.MAX_VALUE,Integer.MAX_VALUE},
        {3,2,Integer.MAX_VALUE,3,4,Integer.MAX_VALUE},
        {Integer.MAX_VALUE,5,3,Integer.MAX_VALUE,5,3},
        {Integer.MAX_VALUE,Integer.MAX_VALUE,4,5,Integer.MAX_VALUE,5},
        {Integer.MAX_VALUE,Integer.MAX_VALUE,Integer.MAX_VALUE,3,5,Integer.MAX_VALUE}
    
    };
    Graph graph = new Graph(vertexs, edges);
    graph.printGraph();
    graph.search();
  }
  
}
로그인 후 복사

위 내용은 Java에서 최단 경로 알고리즘을 위한 Dijkstra 알고리즘 구현의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

자바의 완전수 자바의 완전수 Aug 30, 2024 pm 04:28 PM

Java의 완전수 가이드. 여기서는 정의, Java에서 완전 숫자를 확인하는 방법, 코드 구현 예제에 대해 논의합니다.

자바의 웨카 자바의 웨카 Aug 30, 2024 pm 04:28 PM

Java의 Weka 가이드. 여기에서는 소개, weka java 사용 방법, 플랫폼 유형 및 장점을 예제와 함께 설명합니다.

Java의 스미스 번호 Java의 스미스 번호 Aug 30, 2024 pm 04:28 PM

Java의 Smith Number 가이드. 여기서는 정의, Java에서 스미스 번호를 확인하는 방법에 대해 논의합니다. 코드 구현의 예.

Java Spring 인터뷰 질문 Java Spring 인터뷰 질문 Aug 30, 2024 pm 04:29 PM

이 기사에서는 가장 많이 묻는 Java Spring 면접 질문과 자세한 답변을 보관했습니다. 그래야 면접에 합격할 수 있습니다.

Java 8 Stream foreach에서 나누거나 돌아 오시겠습니까? Java 8 Stream foreach에서 나누거나 돌아 오시겠습니까? Feb 07, 2025 pm 12:09 PM

Java 8은 스트림 API를 소개하여 데이터 컬렉션을 처리하는 강력하고 표현적인 방법을 제공합니다. 그러나 스트림을 사용할 때 일반적인 질문은 다음과 같은 것입니다. 기존 루프는 조기 중단 또는 반환을 허용하지만 스트림의 Foreach 메소드는이 방법을 직접 지원하지 않습니다. 이 기사는 이유를 설명하고 스트림 처리 시스템에서 조기 종료를 구현하기위한 대체 방법을 탐색합니다. 추가 읽기 : Java Stream API 개선 스트림 foreach를 이해하십시오 Foreach 메소드는 스트림의 각 요소에서 하나의 작업을 수행하는 터미널 작동입니다. 디자인 의도입니다

Java의 날짜까지의 타임스탬프 Java의 날짜까지의 타임스탬프 Aug 30, 2024 pm 04:28 PM

Java의 TimeStamp to Date 안내. 여기서는 소개와 예제와 함께 Java에서 타임스탬프를 날짜로 변환하는 방법에 대해서도 설명합니다.

캡슐의 양을 찾기위한 Java 프로그램 캡슐의 양을 찾기위한 Java 프로그램 Feb 07, 2025 am 11:37 AM

캡슐은 3 차원 기하학적 그림이며, 양쪽 끝에 실린더와 반구로 구성됩니다. 캡슐의 부피는 실린더의 부피와 양쪽 끝에 반구의 부피를 첨가하여 계산할 수 있습니다. 이 튜토리얼은 다른 방법을 사용하여 Java에서 주어진 캡슐의 부피를 계산하는 방법에 대해 논의합니다. 캡슐 볼륨 공식 캡슐 볼륨에 대한 공식은 다음과 같습니다. 캡슐 부피 = 원통형 볼륨 2 반구 볼륨 안에, R : 반구의 반경. H : 실린더의 높이 (반구 제외). 예 1 입력하다 반경 = 5 단위 높이 = 10 단위 산출 볼륨 = 1570.8 입방 단위 설명하다 공식을 사용하여 볼륨 계산 : 부피 = π × r2 × h (4

미래를 창조하세요: 완전 초보자를 위한 Java 프로그래밍 미래를 창조하세요: 완전 초보자를 위한 Java 프로그래밍 Oct 13, 2024 pm 01:32 PM

Java는 초보자와 숙련된 개발자 모두가 배울 수 있는 인기 있는 프로그래밍 언어입니다. 이 튜토리얼은 기본 개념부터 시작하여 고급 주제를 통해 진행됩니다. Java Development Kit를 설치한 후 간단한 "Hello, World!" 프로그램을 작성하여 프로그래밍을 연습할 수 있습니다. 코드를 이해한 후 명령 프롬프트를 사용하여 프로그램을 컴파일하고 실행하면 "Hello, World!"가 콘솔에 출력됩니다. Java를 배우면 프로그래밍 여정이 시작되고, 숙달이 깊어짐에 따라 더 복잡한 애플리케이션을 만들 수 있습니다.

See all articles