2차원 array_python의 로컬 피크 값을 찾는 Python 분할 및 정복 방법
이제 2차원 배열의 로컬 피크 값을 찾는 Python 분할 정복 방법에 대한 기사를 공유하겠습니다. 이는 좋은 참조 값을 가지고 있으며 모든 사람에게 도움이 되기를 바랍니다. 같이 구경하러 가세요
질문의 의미는 대략 n*m 2차원 배열에서 로컬 피크를 찾는 것입니다. 피크 값은 4개의 인접한 요소보다 커야 합니다(배열 경계 외부는 음의 무한대로 간주됨). 예를 들어 최종적으로 피크 값 A[j][i]를 찾으면 A[j][i ] > A[j+1][ i] && A[j][i] > A[j-1][i] && A[j][i] > && A[j][i] > A[j][i-1]. 이 피크의 좌표와 값을 반환합니다.
물론, 가장 간단하고 직접적인 방법은 모든 배열 요소를 순회하여 피크 값인지 확인하는 것입니다. 시간 복잡도는 O(n^2)
각 행의 최대값을 찾기 위해 좀 더 최적화합니다. (column), 그리고 이분법(bisection method)을 통해 찾는다. 최대 열의 peak 값(구체적인 방법은 peak 값을 찾는 1차원 배열에서 찾을 수 있다.) 이 알고리즘의 시간복잡도는 O(logn)이다.
여기서 논의되는 것은 O(n)의 복잡도를 갖는 알고리즘입니다. 알고리즘 아이디어는 다음 단계로 나뉩니다.
1. "전"이라는 단어를 찾습니다. 바깥쪽 가장자리 4개와 중앙의 가로, 세로 가장자리 2개(그림의 녹색 부분)를 포함하여 크기를 비교하여 최대값의 위치를 찾습니다. (그림 중 7)
2. Tian이라는 단어에서 최대값을 찾은 후 현지 피크인지 확인하고 그렇지 않으면 좌표를 반환합니다. 발견된 인접한 4개 지점 중 최대값 좌표입니다. 좌표가 위치한 사분면을 통해 범위를 줄이고 다음 필드 문자를 계속해서 비교하세요
3. 범위가 3*3으로 줄어들면 반드시 로컬 피크를 찾을 수 있습니다(또는 이전에 발견되었을 수도 있습니다)
우리가 선택한 범위에 꼭지가 있어야 하는 이유는 이렇게 생각하면 됩니다. 우선, 우리는 적어도 하나의 원이 있다는 것을 알고 있습니다. 원의 모든 요소보다 큰 원의 요소입니다. 그러면 이 원에 최대값이 확실히 존재합니까?
조금 복잡할 수도 있지만 좀 더 생각해보면 이해할 수 있을 것이고, 모순을 이용한 수학적 증명을 이용해 증명할 수도 있습니다.
알고리즘을 이해한 후 다음 단계는 코드를 구현하는 것입니다. 여기서 사용하는 언어는 Python입니다. (저는 Python을 처음 접하기 때문에 간결하지 않은 몇 가지 사용법을 이해해 주시기 바랍니다.) code:
import numpy as np def max_sit(*n): #返回最大元素的位置 temp = 0 sit = 0 for i in range(len(n)): if(n[i]>temp): temp = n[i] sit = i return sit def dp(s1,s2,e1,e2): m1 = int((e1-s1)/2)+s1 #row m2 = int((e2-s1)/2)+s2 #col nub = e1-s1 temp = 0 sit_row = 0 sit_col = 0 for i in range(nub): t = max_sit(list[s1][s2+i], #第一排 list[m1][s2+i], #中间排 list[e1][s2+i], #最后排 list[s1+i][s2], #第一列 list[s1+i][m2], #中间列 list[s1+i][e2], #最后列 temp) if(t==6): pass elif(t==0): temp = list[s1][s2+i] sit_row = s1 sit_col = s2+i elif(t==1): temp = list[m1][s2+i] sit_row = m1 sit_col = s2+i elif(t==2): temp = list[e1][s2+i] sit_row = e1 sit_col = s2+i elif(t==3): temp = list[s1+i][s2] sit_row = s1+i sit_row = s2 elif(t==4): temp = list[s1+i][m2] sit_row = s1+i sit_col = m2 elif(t==5): temp = list[s1+i][e2] sit_row = s1+i sit_col = m2 t = max_sit(list[sit_row][sit_col], #中 list[sit_row-1][sit_col], #上 list[sit_row+1][sit_col], #下 list[sit_row][sit_col-1], #左 list[sit_row][sit_col+1]) #右 if(t==0): return [sit_row-1,sit_col-1] elif(t==1): sit_row-=1 elif(t==2): sit_row+=1 elif(t==3): sit_col-=1 elif(t==4): sit_col+=1 if(sit_row<m1): e1 = m1 else: s1 = m1 if(sit_col<m2): e2 = m2 else: s2 = m2 return dp(s1,s2,e1,e2) f = open("demo.txt","r") list = f.read() list = list.split("\n") #对行进行切片 list = ["0 "*len(list)]+list+["0 "*len(list)] #加上下的围墙 for i in range(len(list)): #对列进行切片 list[i] = list[i].split() list[i] = ["0"]+list[i]+["0"] #加左右的围墙 list = np.array(list).astype(np.int32) row_n = len(list) col_n = len(list[0]) ans_sit = dp(0,0,row_n-1,col_n-1) print("找到峰值点位于:",ans_sit) print("该峰值点大小为:",list[ans_sit[0]+1,ans_sit[1]+1]) f.close()
우선 제가 입력한 내용이 txt 텍스트 파일에 적혀 있는데, 구체적인 변환 과정은 제 이전 블로그 - 문자열 변환에서 보실 수 있습니다. Python의 2차원 배열로. (Windows 환경에서 분할 목록에 빈 꼬리가 없으면 list.pop() 문장을 추가할 필요가 없다는 점에 유의해야 합니다.) 몇 가지 변경 사항은 2차원 배열 주위에 "0" 벽을 추가했다는 것입니다. 벽을 추가하면 최고값을 판단할 때 경계 문제를 고려할 필요가 없습니다.
max_sit(*n) 함수는 여러 값 중 최대값의 위치를 찾아 그 위치를 반환하는 데 사용됩니다. Python에 내장된 max 함수는 최대값만 반환할 수 있으므로 직접 작성해야 합니다. *n은 무한 길이 매개변수를 나타냅니다. 왜냐하면 Tian과 Ten을 비교할 때(피크 값을 결정하기 위해) 이 함수를 사용해야 하기 때문입니다.
def max_sit(*n): #返回最大元素的位置 temp = 0 sit = 0 for i in range(len(n)): if(n[i]>temp): temp = n[i] sit = i return sit
dp(s1,s2,e1,e2) 함수의 4개 매개변수 startx, starty, endx, endy로 볼 수 있습니다. 즉, 범위의 왼쪽 상단과 오른쪽 하단의 좌표 값을 찾습니다.
m1과 m2는 각각 row와 col의 중간값으로 "tian"이라는 단어의 중간값입니다.
def dp(s1,s2,e1,e2): m1 = int((e1-s1)/2)+s1 #row m2 = int((e2-s1)/2)+s2 #col
최대값을 찾으려면 3행과 3열의 값을 비교하세요. 참고로 2차원 배열은 정사각형이어야 합니다. made
for i in range(nub): t = max_sit(list[s1][s2+i], #第一排 list[m1][s2+i], #中间排 list[e1][s2+i], #最后排 list[s1+i][s2], #第一列 list[s1+i][m2], #中间列 list[s1+i][e2], #最后列 temp) if(t==6): pass elif(t==0): temp = list[s1][s2+i] sit_row = s1 sit_col = s2+i elif(t==1): temp = list[m1][s2+i] sit_row = m1 sit_col = s2+i elif(t==2): temp = list[e1][s2+i] sit_row = e1 sit_col = s2+i elif(t==3): temp = list[s1+i][s2] sit_row = s1+i sit_row = s2 elif(t==4): temp = list[s1+i][m2] sit_row = s1+i sit_row = m2 elif(t==5): temp = list[s1+i][e2] sit_row = s1+i sit_row = m2
Tian이라는 단어의 최대값이 Peak값인지 확인하고, 인접한 최대값을 찾을 수 없는지 확인
t = max_sit(list[sit_row][sit_col], #中 list[sit_row-1][sit_col], #上 list[sit_row+1][sit_col], #下 list[sit_row][sit_col-1], #左 list[sit_row][sit_col+1]) #右 if(t==0): return [sit_row-1,sit_col-1] elif(t==1): sit_row-=1 elif(t==2): sit_row+=1 elif(t==3): sit_col-=1 elif(t==4): sit_col+=1
범위를 좁혀 재귀적으로 풀어보세요
if(sit_row<m1): e1 = m1 else: s1 = m1 if(sit_col<m2): e2 = m2 else: s2 = m2 return dp(s1,s2,e1,e2)
좋아요 , 코드 분석은 기본적으로 여기에서 완료됩니다. 불분명한 점이 있으면 아래에 메시지를 남겨주세요.
이 알고리즘 외에도 이 문제를 해결하기 위해 그리디 알고리즘도 작성했습니다. 안타깝게도 QAQ라는 최악의 경우 알고리즘 복잡도는 여전히 O(n^2)입니다.
일반적인 개념은 중간 위치부터 인접한 4개의 점 중 가장 큰 점을 찾고, 계속해서 가장 큰 인접 점을 찾는 것입니다. 마지막으로 관심이 있는 경우 정점을 찾을 수 있습니다. 코드를 보세요:
#!/usr/bin/python3 def dp(n): temp = (str[n],str[n-9],str[n-1],str[n+1],str[n+9]) #中 上 左 右 下 sit = temp.index(max(temp)) if(sit==0): return str[n] elif(sit==1): return dp(n-9) elif(sit==2): return dp(n-1) elif(sit==3): return dp(n+1) else: return dp(n+9) f = open("/home/nancy/桌面/demo.txt","r") list = f.read() list = list.replace(" ","").split() #转换为列表 row = len(list) col = len(list[0]) str="0"*(col+3) for x in list: #加围墙 二维变一维 str+=x+"00" str+="0"*(col+1) mid = int(len(str)/2) print(str,mid) p = dp(mid) print (p) f.close()
관련 권장 사항:
위 내용은 2차원 array_python의 로컬 피크 값을 찾는 Python 분할 및 정복 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Python과 JavaScript는 커뮤니티, 라이브러리 및 리소스 측면에서 고유 한 장점과 단점이 있습니다. 1) Python 커뮤니티는 친절하고 초보자에게 적합하지만 프론트 엔드 개발 리소스는 JavaScript만큼 풍부하지 않습니다. 2) Python은 데이터 과학 및 기계 학습 라이브러리에서 강력하며 JavaScript는 프론트 엔드 개발 라이브러리 및 프레임 워크에서 더 좋습니다. 3) 둘 다 풍부한 학습 리소스를 가지고 있지만 Python은 공식 문서로 시작하는 데 적합하지만 JavaScript는 MDNWebDocs에서 더 좋습니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

vs 코드에서는 다음 단계를 통해 터미널에서 프로그램을 실행할 수 있습니다. 코드를 준비하고 통합 터미널을 열어 코드 디렉토리가 터미널 작업 디렉토리와 일치하는지 확인하십시오. 프로그래밍 언어 (예 : Python의 Python Your_file_name.py)에 따라 실행 명령을 선택하여 성공적으로 실행되는지 여부를 확인하고 오류를 해결하십시오. 디버거를 사용하여 디버깅 효율을 향상시킵니다.

VS 코드는 파이썬을 작성하는 데 사용될 수 있으며 파이썬 애플리케이션을 개발하기에 이상적인 도구가되는 많은 기능을 제공합니다. 사용자는 다음을 수행 할 수 있습니다. Python 확장 기능을 설치하여 코드 완료, 구문 강조 및 디버깅과 같은 기능을 얻습니다. 디버거를 사용하여 코드를 단계별로 추적하고 오류를 찾아 수정하십시오. 버전 제어를 위해 git을 통합합니다. 코드 서식 도구를 사용하여 코드 일관성을 유지하십시오. 라인 도구를 사용하여 잠재적 인 문제를 미리 발견하십시오.

VS 코드 확장은 악의적 인 코드 숨기기, 취약성 악용 및 합법적 인 확장으로 자위하는 등 악성 위험을 초래합니다. 악의적 인 확장을 식별하는 방법에는 게시자 확인, 주석 읽기, 코드 확인 및주의해서 설치가 포함됩니다. 보안 조치에는 보안 인식, 좋은 습관, 정기적 인 업데이트 및 바이러스 백신 소프트웨어도 포함됩니다.

VS 코드는 Windows 8에서 실행될 수 있지만 경험은 크지 않을 수 있습니다. 먼저 시스템이 최신 패치로 업데이트되었는지 확인한 다음 시스템 아키텍처와 일치하는 VS 코드 설치 패키지를 다운로드하여 프롬프트대로 설치하십시오. 설치 후 일부 확장은 Windows 8과 호환되지 않을 수 있으며 대체 확장을 찾거나 가상 시스템에서 새로운 Windows 시스템을 사용해야합니다. 필요한 연장을 설치하여 제대로 작동하는지 확인하십시오. Windows 8에서는 VS 코드가 가능하지만 더 나은 개발 경험과 보안을 위해 새로운 Windows 시스템으로 업그레이드하는 것이 좋습니다.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

VS Code는 Full Name Visual Studio Code로, Microsoft가 개발 한 무료 및 오픈 소스 크로스 플랫폼 코드 편집기 및 개발 환경입니다. 광범위한 프로그래밍 언어를 지원하고 구문 강조 표시, 코드 자동 완료, 코드 스 니펫 및 스마트 프롬프트를 제공하여 개발 효율성을 향상시킵니다. 풍부한 확장 생태계를 통해 사용자는 디버거, 코드 서식 도구 및 GIT 통합과 같은 특정 요구 및 언어에 확장을 추가 할 수 있습니다. VS 코드에는 코드에서 버그를 신속하게 찾아서 해결하는 데 도움이되는 직관적 인 디버거도 포함되어 있습니다.

VS 코드는 Python을 실행할 수있을뿐만 아니라 Python Extensions를 설치 한 후 Python 파일을 자동으로 식별하고 코드 완료, 구문 강조 표시, 디버깅 및 기타 기능을 제공하는 등 강력한 기능을 제공합니다. 설치된 파이썬 환경에 의존하면 확장은 브리지 연결 편집 및 파이썬 환경 역할을합니다. 디버깅 기능에는 중단 점 설정, 단계별 디버깅, 변수 값보기 및 디버깅 효율 향상이 포함됩니다. 통합 터미널은 단위 테스트 및 패키지 관리와 같은 복잡한 명령을 실행하는 것을 지원합니다. 확장 구성을 지원하고 코드 형식, 분석 및 버전 제어와 같은 기능을 향상시킵니다.
