OpenCV 방식을 이용한 Python 인터페이스
이번에는 Python 인터페이스로 OpenCV를 사용하는 방법을 알려드리겠습니다. OpenCV를 Python 인터페이스로 사용할 때 주의사항은 무엇인가요?
1. Anaconda2에서 OpenCV 구성
opencv 압축 풀기, 시스템 환경 변수 추가, 컴퓨터->속성 마우스 오른쪽 버튼 클릭-->고급 시스템 설정-->환경 변수-->시스템 변수 -->경로 편집-->F:Program Files (x86)opencv-3.2.0-vc14buildx64vc14bin
opencv/build/python/2.7/x64/cv2.pyd를 Anaconda2/Lib/Site에 복사합니다- packages /
참고: 위 python/2.7에서 볼 수 있듯이 opencv의 공식 Python 인터페이스는 Anaconda2 버전만 지원합니다. Anaconda3을 설치하면 cmd를 연 다음 conda install -c https://conda를 실행할 수 있습니다. .anaconda .org/menpo opencv3;
이 기사를 참조하여 Anaconda3을 구성할 수도 있습니다
ipython을 열고 테스트해보세요
import cv2 print(cv2.version)
2. OpenCV 기본
1. 이미지
import cv2 import matplotlib.pyplot as plt # 读取图像,第二个参数可以为1(默认读入彩图, 可省略), 0(以灰度图读入) im = cv2.imread('empire.jpg', 1) # 函数imread()返回图像为一个标准的 NumPy 数组 h,w = im.shape[:2] print h,w # 显示图像,第一个参数是窗口的名字,其次才是我们的图像,窗口会自动调整为图像大小。 cv2.imshow('image', img) cv2.waitKey(0) # 为防止图像一闪而过,无限期的等待键盘输入 cv2.destroyAllWindows() # 关闭所有图像 # 保存图像(必须设置保存图像的路径和扩展名) cv2.imwrite('result.png', im) # 使用 plt 显示图像(可显示像素坐标及像素值)、保存图像 plt.imshow(im, cmap='gray', interpolation='bicubic') plt.show() plt.savefig('figpath.png', bbox_inches='tight')
2. 색 공간 변환
OpenCV에서는 이미지가 기존 RGB 색상 채널이 아닌 BGR 순서(즉, RGB의 역순)로 저장됩니다. 이미지를 읽을 때 기본값은 BGR이지만 일부 변환 기능을 사용할 수 있습니다. 색 공간 변환은 cvtColor() 함수를 사용하여 수행할 수 있습니다.
# 1.使用opencv读取并创建灰度图像,按 BGR 顺序 im = cv2.imread('empire.jpg') gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) # 2.使用matplotlib.image 读入并创建灰度图像,按 RGB 顺序 import matplotlib.image as mpl_img im = mpl_img.imread('empire.jpg') gray = cv2.cvtColor(im, cv2.COLOR_RGB2GRAY) # Note: 注意1和2的区别在颜色转换代码 # 常用:cv2.COLOR_BGR2RGB、cv2.COLOR_GRAY2BGR、cv2.COLOR_BGR2HSV
3. 이미지에 직선, 직사각형, 원, 다각형(곡선)을 그립니다.
직선 그리기: cv2.line()
import cv2 # 读取图像,按 BGR 顺序 img = cv2.imread('empire.jpg') # 传入图像、起点坐标、终点坐标、线的颜色(color)、线的厚度(thickness) # color : Color of the shape. for BGR, pass it as a tuple, eg: (255,0,0) for blue. For grayscale, just pass the scalar value. # thickness : if -1 is passed for closed figures like circles, it will fill the shape, default thickness = 1. img = cv2.line(img, (0, 0), (511, 511), (255, 0, 0), 5)
직사각형 그리기: cv2.lectangle()
# 需要传入图像、左上角顶点坐标、右下角顶点坐标、颜色、线宽 img = cv2.rectangle(img, (384, 0), (510, 128), (0, 255, 0), 3)
원 그리기: cv2.circle()
# 需要传入图像、圆的中心点坐标、半径、颜色、线宽 img = cv2.circle(img, (447, 63), 63, (0, 0, 255), -1) # If -1 is passed for closed figures like circles, it will fill the shape. default thickness = 1
다각형 그리기(곡선 포함): cv2.polylines()
# 数组的数据类型必须为int32,若知道曲线方程,可以生成一堆点,就可以画出曲线来啦 pts = np.array([[10,5],[20,30],[70,20],[50,10]], np.int32) # 第一个参数为-1, 表明这一维的长度(点的数量)是根据后面的维度的计算出来的 pts = pts.reshape((-1,1,2)) # 如果第三个参数是False,我们得到的多边形是不闭合的(首尾不相连) img = cv2.polylines(img, [pts], True, (0, 255, 255))
그림에 텍스트 추가: cv2.putText()
font = cv2.FONT_HERSHEY_SIMPLEX # 第 3~6 个参数为:bottom-left corner where data starts、font size、color、thickness cv2.putText(img,'OpenCV',(10,500), font, 4, (255, 255, 255), 2, cv2.LINE_AA)
Get 그리고 픽셀 값 수정
import cv2 import numpy as np img = cv2.imread('messi5.jpg') px = img[100, 100] print px [57 63 68] # accessing only blue pixel blue = img[100, 100, 0] print blue 57 # modify the pixel img[100, 100] = [255, 255, 255] print img[100, 100] [255 255 255] # channel 2 所有值置为0 img[:, :, 2] = 0
이미지 속성 가져오기
img = cv2.imread('messi5.jpg') print img.shape (960L, 1280L, 3L) print img.size 3686400 print img.dtype uint8
이미지 블록 선택
img = cv2.imread('messi5.jpg') # select the ball and copy it to another region ball = img[280:340, 330:390] # 注意:340和390取不到 img[273:333, 100:160] = ball
이 기사의 사례를 읽으신 후 방법을 마스터하셨다고 생각합니다. 더 흥미로운 정보를 보려면 PHP 중국어의 다른 관련 기사를 주목하세요. 웹사이트!
추천 자료:
Python opencv는 대상 색상을 감지하고 추출합니다
Python은 어떻게 데이터 프레임의 데이터를 데이터베이스에 기록합니까
위 내용은 OpenCV 방식을 이용한 Python 인터페이스의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











PHP와 Python은 고유 한 장점과 단점이 있으며 선택은 프로젝트 요구와 개인 선호도에 달려 있습니다. 1.PHP는 대규모 웹 애플리케이션의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 데이터 과학 및 기계 학습 분야를 지배합니다.

CentOS 시스템에서 Pytorch GPU 가속도를 활성화하려면 Cuda, Cudnn 및 GPU 버전의 Pytorch를 설치해야합니다. 다음 단계는 프로세스를 안내합니다. CUDA 및 CUDNN 설치 CUDA 버전 호환성 결정 : NVIDIA-SMI 명령을 사용하여 NVIDIA 그래픽 카드에서 지원하는 CUDA 버전을보십시오. 예를 들어, MX450 그래픽 카드는 CUDA11.1 이상을 지원할 수 있습니다. Cudatoolkit 다운로드 및 설치 : NVIDIACUDATOOLKIT의 공식 웹 사이트를 방문하여 그래픽 카드에서 지원하는 가장 높은 CUDA 버전에 따라 해당 버전을 다운로드하여 설치하십시오. CUDNN 라이브러리 설치 :

Python과 JavaScript는 커뮤니티, 라이브러리 및 리소스 측면에서 고유 한 장점과 단점이 있습니다. 1) Python 커뮤니티는 친절하고 초보자에게 적합하지만 프론트 엔드 개발 리소스는 JavaScript만큼 풍부하지 않습니다. 2) Python은 데이터 과학 및 기계 학습 라이브러리에서 강력하며 JavaScript는 프론트 엔드 개발 라이브러리 및 프레임 워크에서 더 좋습니다. 3) 둘 다 풍부한 학습 리소스를 가지고 있지만 Python은 공식 문서로 시작하는 데 적합하지만 JavaScript는 MDNWebDocs에서 더 좋습니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Docker는 Linux 커널 기능을 사용하여 효율적이고 고립 된 응용 프로그램 실행 환경을 제공합니다. 작동 원리는 다음과 같습니다. 1. 거울은 읽기 전용 템플릿으로 사용되며, 여기에는 응용 프로그램을 실행하는 데 필요한 모든 것을 포함합니다. 2. Union 파일 시스템 (Unionfs)은 여러 파일 시스템을 스택하고 차이점 만 저장하고 공간을 절약하고 속도를 높입니다. 3. 데몬은 거울과 컨테이너를 관리하고 클라이언트는 상호 작용을 위해 사용합니다. 4. 네임 스페이스 및 CGroup은 컨테이너 격리 및 자원 제한을 구현합니다. 5. 다중 네트워크 모드는 컨테이너 상호 연결을 지원합니다. 이러한 핵심 개념을 이해 함으로써만 Docker를 더 잘 활용할 수 있습니다.

Minio Object Storage : Centos System Minio 하의 고성능 배포는 Go Language를 기반으로 개발 한 고성능 분산 객체 저장 시스템입니다. Amazons3과 호환됩니다. Java, Python, JavaScript 및 Go를 포함한 다양한 클라이언트 언어를 지원합니다. 이 기사는 CentOS 시스템에 대한 Minio의 설치 및 호환성을 간단히 소개합니다. CentOS 버전 호환성 Minio는 다음을 포함하되 이에 국한되지 않는 여러 CentOS 버전에서 확인되었습니다. CentOS7.9 : 클러스터 구성, 환경 준비, 구성 파일 설정, 디스크 파티셔닝 및 미니를 다루는 완전한 설치 안내서를 제공합니다.

CentOS 시스템에 대한 Pytorch 분산 교육에는 다음 단계가 필요합니다. Pytorch 설치 : 전제는 Python과 PIP가 CentOS 시스템에 설치된다는 것입니다. CUDA 버전에 따라 Pytorch 공식 웹 사이트에서 적절한 설치 명령을 받으십시오. CPU 전용 교육의 경우 다음 명령을 사용할 수 있습니다. PipinStalltorchtorchvisiontorchaudio GPU 지원이 필요한 경우 CUDA 및 CUDNN의 해당 버전이 설치되어 있는지 확인하고 해당 PyTorch 버전을 설치하려면 설치하십시오. 분산 환경 구성 : 분산 교육에는 일반적으로 여러 기계 또는 단일 기계 다중 GPU가 필요합니다. 장소

CentOS 시스템에 Pytorch를 설치할 때는 적절한 버전을 신중하게 선택하고 다음 주요 요소를 고려해야합니다. 1. 시스템 환경 호환성 : 운영 체제 : CentOS7 이상을 사용하는 것이 좋습니다. Cuda 및 Cudnn : Pytorch 버전 및 Cuda 버전은 밀접하게 관련되어 있습니다. 예를 들어, pytorch1.9.0은 cuda11.1을 필요로하고 Pytorch2.0.1은 cuda11.3을 필요로합니다. CUDNN 버전도 CUDA 버전과 일치해야합니다. Pytorch 버전을 선택하기 전에 호환 CUDA 및 CUDNN 버전이 설치되었는지 확인하십시오. 파이썬 버전 : Pytorch 공식 지점

Centos의 최신 버전으로 Pytorch를 업데이트하면 다음 단계를 수행 할 수 있습니다. 방법 1 : PIP를 사용하여 PIP 업데이트 : 먼저 PIP의 PIP 버전이 최신 버전의 PyTorch를 제대로 설치하지 못할 수 있기 때문에 PIP가 최신 버전인지 확인하십시오. PipinStall-UpgradePip Unin Incalls of Pytorch (설치된 경우) : PipuninStalltorchtorchvisiontorchaudio 설치 최신 정보
