백엔드 개발 파이썬 튜토리얼 Python은 의사결정 트리 알고리즘을 구현합니다.

Python은 의사결정 트리 알고리즘을 구현합니다.

Apr 19, 2018 pm 04:50 PM
python

이 문서의 예에서는 Python에서 의사결정 트리 알고리즘을 구현하는 방법을 설명합니다. 참고할 수 있도록 모든 사람과 공유하세요. 세부 사항은 다음과 같습니다.

from sklearn.feature_extraction import DictVectorizer
import csv
from sklearn import tree
from sklearn import preprocessing
from sklearn.externals.six import StringIO

# 读取csv数据,并将数据和特征值存入字典和类标签列表
allElectronicsData = open(r'AllElectronics.csv', 'rt')
reader = csv.reader(allElectronicsData)
headers = next(reader)
# 原代码中用的是:
# headers = reader.next()
# 这句代码应该是之前的版本用的,现在已经更新了没有next这个函数

# print(headers)

featureList = []
labelList = []

for row in reader:
    labelList.append(row[len(row) - 1])
    rowDict = {}
    for i in range(1, len(row) - 1):
        rowDict[headers[i]] = row[i]
    featureList.append(rowDict)

# print(featureList)


# 将特征值矢量化,代表将各种参数进行矢量化
vec = DictVectorizer()
dummyX = vec.fit_transform(featureList).toarray()

# print("dummyX: " + str(dummyX))
# print(vec.get_feature_names())

# print("labelList: " + str(labelList))

# 将类标签列表矢量化,就是最后的结果
lb = preprocessing.LabelBinarizer()
dummyY = lb.fit_transform(labelList)
# print("dummyY: " + str(dummyY))

# 使用决策树进行分类
clf = tree.DecisionTreeClassifier()
# clf = tree.DecisionTreeClassifier(criterion = 'entropy')
clf = clf.fit(dummyX, dummyY)
# print("clf: " + str(clf))

# 将模型进行可视化
with open("allElectrionicInformationOri.dot", 'w') as f:
    f = tree.export_graphviz(clf, feature_names = vec.get_feature_names(), out_file = f)

oneRowX = dummyX[0, :]
# print("oneRowX: " + str(oneRowX))

# 接下来改变一些数据进行预测
newRowX = oneRowX

newRowX[0] = 0
newRowX[1] = 1
print("newRowX: " + str(newRowX))

predictedY = clf.predict(newRowX.reshape(1, -1))  # 预测的结果需要加上后面的reshape(1, -1),不然会
# 报错:
# ValueError: Expected 2D array, got 1D array instead:
# array=[0. 1. 1. 0. 1. 1. 0. 0. 1. 0.].
# Reshape your data either using array.reshape(-1, 1)
# if your data has a single feature or array.reshape(1, -1) if it contains a single sample.
print("预测的结果为: " + str(predictedY))
로그인 후 복사


사람들의 구매력을 분류하여 프로젝트를 분류하고 최종 과정에서 결과에 대해 특정 예측을 할 수도 있습니다. 위에 표시된 코드에는 몇 가지 장점과 단점이 있습니다.

결정 트리 알고리즘의 장점:

  1) 간단하고 직관적이며 생성된 결정 트리는 매우 직관적입니다.

  2) 기본적으로 전처리가 필요 없고, 사전에 정규화할 필요도 없으며, 누락된 값을 처리할 필요도 없습니다.

   3) 의사결정 트리 예측을 사용하는 비용은O(log2 m) O(log2m). m은 샘플 수입니다.

  4) 이산값과 연속값을 모두 처리할 수 있습니다. 많은 알고리즘은 이산 값이나 연속 값에만 중점을 둡니다.

  5) 다차원 출력의 분류 문제를 처리할 수 있습니다.

   6) 신경망과 같은 블랙박스 분류 모델과 비교하여 의사결정 트리를 논리적으로 잘 설명할 수 있습니다.

   7) 교차 검증 가지치기를 사용하여 일반화 능력을 향상시키는 모델을 선택할 수 있습니다.

  8) 이상점에 대한 내결함성이 우수하고 견고성이 높습니다.

  의사결정 트리 알고리즘의 단점을 살펴보겠습니다.

  1) 의사결정 트리 알고리즘은 과적합되기 매우 쉽고 일반화 능력이 약합니다. 이는 노드의 최소 샘플 수를 설정하고 의사결정 트리의 깊이를 제한하여 개선할 수 있습니다.

  2) 결정 트리는 표본의 작은 변화로 인해 트리 구조에 급격한 변화를 가져옵니다. 이는 앙상블 학습과 같은 방법을 통해 해결할 수 있습니다.

  3) 최적의 의사결정 트리를 찾는 것은 NP-hard 문제입니다. 우리는 일반적으로 휴리스틱 방법을 사용하므로 쉽게 지역적 최적성에 빠질 수 있습니다. 이는 앙상블 학습과 같은 방법을 통해 개선될 수 있습니다.

   4) 의사결정 트리가 XOR과 같은 좀 더 복잡한 관계를 학습하는 것은 어렵습니다. 일반적으로 이 관계는 신경망 분류 방법을 사용하여 해결할 수 있습니다.

  5) 특정 기능의 표본 비율이 너무 크면 생성된 의사결정 트리가 이러한 기능에 편향되는 경향이 있습니다. 이는 샘플 가중치를 조정하여 개선할 수 있습니다.


관련 권장 사항:

상위 10개 데이터 마이닝 알고리즘의 의사결정 트리에 대한 자세한 설명

의사결정 트리 알고리즘

그리고 케이스

의사결정 트리 알고리즘 구현

위 내용은 Python은 의사결정 트리 알고리즘을 구현합니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

PHP와 Python : 다른 패러다임이 설명되었습니다 PHP와 Python : 다른 패러다임이 설명되었습니다 Apr 18, 2025 am 12:26 AM

PHP는 주로 절차 적 프로그래밍이지만 객체 지향 프로그래밍 (OOP)도 지원합니다. Python은 OOP, 기능 및 절차 프로그래밍을 포함한 다양한 패러다임을 지원합니다. PHP는 웹 개발에 적합하며 Python은 데이터 분석 및 기계 학습과 같은 다양한 응용 프로그램에 적합합니다.

PHP와 Python 중에서 선택 : 가이드 PHP와 Python 중에서 선택 : 가이드 Apr 18, 2025 am 12:24 AM

PHP는 웹 개발 및 빠른 프로토 타이핑에 적합하며 Python은 데이터 과학 및 기계 학습에 적합합니다. 1.PHP는 간단한 구문과 함께 동적 웹 개발에 사용되며 빠른 개발에 적합합니다. 2. Python은 간결한 구문을 가지고 있으며 여러 분야에 적합하며 강력한 라이브러리 생태계가 있습니다.

Python vs. JavaScript : 학습 곡선 및 사용 편의성 Python vs. JavaScript : 학습 곡선 및 사용 편의성 Apr 16, 2025 am 12:12 AM

Python은 부드러운 학습 곡선과 간결한 구문으로 초보자에게 더 적합합니다. JavaScript는 가파른 학습 곡선과 유연한 구문으로 프론트 엔드 개발에 적합합니다. 1. Python Syntax는 직관적이며 데이터 과학 및 백엔드 개발에 적합합니다. 2. JavaScript는 유연하며 프론트 엔드 및 서버 측 프로그래밍에서 널리 사용됩니다.

Python에서 비주얼 스튜디오 코드를 사용할 수 있습니다 Python에서 비주얼 스튜디오 코드를 사용할 수 있습니다 Apr 15, 2025 pm 08:18 PM

VS 코드는 파이썬을 작성하는 데 사용될 수 있으며 파이썬 애플리케이션을 개발하기에 이상적인 도구가되는 많은 기능을 제공합니다. 사용자는 다음을 수행 할 수 있습니다. Python 확장 기능을 설치하여 코드 완료, 구문 강조 및 디버깅과 같은 기능을 얻습니다. 디버거를 사용하여 코드를 단계별로 추적하고 오류를 찾아 수정하십시오. 버전 제어를 위해 git을 통합합니다. 코드 서식 도구를 사용하여 코드 일관성을 유지하십시오. 라인 도구를 사용하여 잠재적 인 문제를 미리 발견하십시오.

Windows 8에서 코드를 실행할 수 있습니다 Windows 8에서 코드를 실행할 수 있습니다 Apr 15, 2025 pm 07:24 PM

VS 코드는 Windows 8에서 실행될 수 있지만 경험은 크지 않을 수 있습니다. 먼저 시스템이 최신 패치로 업데이트되었는지 확인한 다음 시스템 아키텍처와 일치하는 VS 코드 설치 패키지를 다운로드하여 프롬프트대로 설치하십시오. 설치 후 일부 확장은 Windows 8과 호환되지 않을 수 있으며 대체 확장을 찾거나 가상 시스템에서 새로운 Windows 시스템을 사용해야합니다. 필요한 연장을 설치하여 제대로 작동하는지 확인하십시오. Windows 8에서는 VS 코드가 가능하지만 더 나은 개발 경험과 보안을 위해 새로운 Windows 시스템으로 업그레이드하는 것이 좋습니다.

PHP와 Python : 그들의 역사에 깊은 다이빙 PHP와 Python : 그들의 역사에 깊은 다이빙 Apr 18, 2025 am 12:25 AM

PHP는 1994 년에 시작되었으며 Rasmuslerdorf에 의해 개발되었습니다. 원래 웹 사이트 방문자를 추적하는 데 사용되었으며 점차 서버 측 스크립팅 언어로 진화했으며 웹 개발에 널리 사용되었습니다. Python은 1980 년대 후반 Guidovan Rossum에 의해 개발되었으며 1991 년에 처음 출시되었습니다. 코드 가독성과 단순성을 강조하며 과학 컴퓨팅, 데이터 분석 및 기타 분야에 적합합니다.

터미널 VSCODE에서 프로그램을 실행하는 방법 터미널 VSCODE에서 프로그램을 실행하는 방법 Apr 15, 2025 pm 06:42 PM

vs 코드에서는 다음 단계를 통해 터미널에서 프로그램을 실행할 수 있습니다. 코드를 준비하고 통합 터미널을 열어 코드 디렉토리가 터미널 작업 디렉토리와 일치하는지 확인하십시오. 프로그래밍 언어 (예 : Python의 Python Your_file_name.py)에 따라 실행 명령을 선택하여 성공적으로 실행되는지 여부를 확인하고 오류를 해결하십시오. 디버거를 사용하여 디버깅 효율을 향상시킵니다.

VScode 확장자가 악의적입니까? VScode 확장자가 악의적입니까? Apr 15, 2025 pm 07:57 PM

VS 코드 확장은 악의적 인 코드 숨기기, 취약성 악용 및 합법적 인 확장으로 자위하는 등 악성 위험을 초래합니다. 악의적 인 확장을 식별하는 방법에는 게시자 확인, 주석 읽기, 코드 확인 및주의해서 설치가 포함됩니다. 보안 조치에는 보안 인식, 좋은 습관, 정기적 인 업데이트 및 바이러스 백신 소프트웨어도 포함됩니다.

See all articles