Python 디지털 영상처리 뼈대 추출 및 유역 알고리즘
이 글에서는 Python 디지털 영상 처리의 뼈대 추출과 유역 알고리즘을 주로 소개하고 참고 자료를 제공합니다. 함께 구경해보세요
뼈대 추출과 유역 알고리즘도 형태학 처리의 범주에 속하며 형태학 서브모듈에 들어있습니다.
1. 뼈대 추출
뼈대 추출, 이진 이미지 희석이라고도 합니다. 이 알고리즘은 특징 추출 및 대상 토폴로지 표현을 위해 연결된 영역을 1픽셀 너비로 세분화할 수 있습니다.
형태학 하위 모듈은 골격 추출을 위한 두 가지 함수, 즉 Skeletonize() 함수와 medial_axis() 함수를 제공합니다. 먼저 Skeletonize() 함수를 살펴보겠습니다.
형식은 skimage.morphology.skeletonize(image)
입력과 출력이 모두 바이너리 이미지입니다.
예제 1:
from skimage import morphology,draw import numpy as np import matplotlib.pyplot as plt #创建一个二值图像用于测试 image = np.zeros((400, 400)) #生成目标对象1(白色U型) image[10:-10, 10:100] = 1 image[-100:-10, 10:-10] = 1 image[10:-10, -100:-10] = 1 #生成目标对象2(X型) rs, cs = draw.line(250, 150, 10, 280) for i in range(10): image[rs + i, cs] = 1 rs, cs = draw.line(10, 150, 250, 280) for i in range(20): image[rs + i, cs] = 1 #生成目标对象3(O型) ir, ic = np.indices(image.shape) circle1 = (ic - 135)**2 + (ir - 150)**2 < 30**2 circle2 = (ic - 135)**2 + (ir - 150)**2 < 20**2 image[circle1] = 1 image[circle2] = 0 #实施骨架算法 skeleton =morphology.skeletonize(image) #显示结果 fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4)) ax1.imshow(image, cmap=plt.cm.gray) ax1.axis('off') ax1.set_title('original', fontsize=20) ax2.imshow(skeleton, cmap=plt.cm.gray) ax2.axis('off') ax2.set_title('skeleton', fontsize=20) fig.tight_layout() plt.show()
세 개의 대상 개체가 있는 테스트 이미지를 생성하고 각각 뼈대 추출을 수행합니다. 결과는 다음과 같습니다.
예제 2: 시스템 자체의 말 그림을 사용합니다. 뼈대 추출
from skimage import morphology,data,color import matplotlib.pyplot as plt image=color.rgb2gray(data.horse()) image=1-image #反相 #实施骨架算法 skeleton =morphology.skeletonize(image) #显示结果 fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4)) ax1.imshow(image, cmap=plt.cm.gray) ax1.axis('off') ax1.set_title('original', fontsize=20) ax2.imshow(skeleton, cmap=plt.cm.gray) ax2.axis('off') ax2.set_title('skeleton', fontsize=20) fig.tight_layout() plt.show()
medial_axis는 내측 축을 의미하며 전경(1개 값) 대상 개체의 너비를 계산하는 형식은
skimage.morphology.입니다. medial_axis( image,mask=None,return_distance=False)
마스크: 마스크. 기본값은 None입니다. 마스크가 주어지면 스켈레톤 알고리즘은 마스크 내의 픽셀 값에 대해서만 수행됩니다.
return_distance: bool 값, 기본값은 False입니다. True이면 스켈레톤 반환과 함께 거리 변환 값도 동시에 반환됩니다. 여기서 거리는 중심축의 모든 점과 배경점 사이의 거리를 의미합니다.
import numpy as np import scipy.ndimage as ndi from skimage import morphology import matplotlib.pyplot as plt #编写一个函数,生成测试图像 def microstructure(l=256): n = 5 x, y = np.ogrid[0:l, 0:l] mask = np.zeros((l, l)) generator = np.random.RandomState(1) points = l * generator.rand(2, n**2) mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1 mask = ndi.gaussian_filter(mask, sigma=l/(4.*n)) return mask > mask.mean() data = microstructure(l=64) #生成测试图像 #计算中轴和距离变换值 skel, distance =morphology.medial_axis(data, return_distance=True) #中轴上的点到背景像素点的距离 dist_on_skel = distance * skel fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4)) ax1.imshow(data, cmap=plt.cm.gray, interpolation='nearest') #用光谱色显示中轴 ax2.imshow(dist_on_skel, cmap=plt.cm.spectral, interpolation='nearest') ax2.contour(data, [0.5], colors='w') #显示轮廓线 fig.tight_layout() plt.show()
2. 유역 알고리즘
유역은 지리상의 능선을 말하며, 물은 일반적으로 능선의 양쪽을 따라 서로 다른 "집수 유역"으로 흐릅니다. 워터셰드 알고리즘은 이미지 분할을 위한 고전적인 알고리즘이자 위상 이론에 기초한 수학적 형태학적 분할 방법입니다. 이미지의 대상 객체가 서로 연결되어 있으면 분할하기가 더 어려워집니다. 이러한 문제를 처리하기 위해 워터셰드 알고리즘이 자주 사용되며 일반적으로 더 나은 결과를 얻습니다.
유역 알고리즘을 거리 변환과 결합하여 "집수 유역"과 "유역 경계"를 찾아 이미지를 분할할 수 있습니다. 이진 이미지의 거리 변환은 각 픽셀에서 가장 가까운 0이 아닌 픽셀까지의 거리입니다. scipy 패키지를 사용하여 거리 변환을 계산할 수 있습니다.
아래 예에서는 두 개의 겹치는 원을 분리해야 합니다. 먼저 원의 흰색 픽셀에서 검은색 배경 픽셀까지의 거리 변환을 계산하고, 이 마커에서 시작하여 거리 변환의 최대값을 초기 마커 지점으로 선택합니다(반전된 색상인 경우 최소값을 취함). 포인트 두 유역은 점점 커지다가 마침내 산 능선에서 교차합니다. 산 능선에서 연결이 끊어지면 두 개의 별도 원이 나타납니다.
예 1: 거리 변환을 기반으로 한 산 능선 이미지 분할
import numpy as np import matplotlib.pyplot as plt from scipy import ndimage as ndi from skimage import morphology,feature #创建两个带有重叠圆的图像 x, y = np.indices((80, 80)) x1, y1, x2, y2 = 28, 28, 44, 52 r1, r2 = 16, 20 mask_circle1 = (x - x1)**2 + (y - y1)**2 < r1**2 mask_circle2 = (x - x2)**2 + (y - y2)**2 < r2**2 image = np.logical_or(mask_circle1, mask_circle2) #现在我们用分水岭算法分离两个圆 distance = ndi.distance_transform_edt(image) #距离变换 local_maxi =feature.peak_local_max(distance, indices=False, footprint=np.ones((3, 3)), labels=image) #寻找峰值 markers = ndi.label(local_maxi)[0] #初始标记点 labels =morphology.watershed(-distance, markers, mask=image) #基于距离变换的分水岭算法 fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(8, 8)) axes = axes.ravel() ax0, ax1, ax2, ax3 = axes ax0.imshow(image, cmap=plt.cm.gray, interpolation='nearest') ax0.set_title("Original") ax1.imshow(-distance, cmap=plt.cm.jet, interpolation='nearest') ax1.set_title("Distance") ax2.imshow(markers, cmap=plt.cm.spectral, interpolation='nearest') ax2.set_title("Markers") ax3.imshow(labels, cmap=plt.cm.spectral, interpolation='nearest') ax3.set_title("Segmented") for ax in axes: ax.axis('off') fig.tight_layout() plt.show()
유역 알고리즘을 그라디언트와 결합하여 이미지 분할을 달성할 수도 있습니다. 일반적으로 그라데이션 이미지는 가장자리에서 더 높은 픽셀 값을 갖고 다른 곳에서는 더 낮은 픽셀 값을 갖는 것이 이상적입니다. 따라서 기울기를 기반으로 능선을 찾을 수 있습니다.
예 2: 그라데이션 기반 유역 이미지 분할
import matplotlib.pyplot as plt from scipy import ndimage as ndi from skimage import morphology,color,data,filter image =color.rgb2gray(data.camera()) denoised = filter.rank.median(image, morphology.disk(2)) #过滤噪声 #将梯度值低于10的作为开始标记点 markers = filter.rank.gradient(denoised, morphology.disk(5)) <10 markers = ndi.label(markers)[0] gradient = filter.rank.gradient(denoised, morphology.disk(2)) #计算梯度 labels =morphology.watershed(gradient, markers, mask=image) #基于梯度的分水岭算法 fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(6, 6)) axes = axes.ravel() ax0, ax1, ax2, ax3 = axes ax0.imshow(image, cmap=plt.cm.gray, interpolation='nearest') ax0.set_title("Original") ax1.imshow(gradient, cmap=plt.cm.spectral, interpolation='nearest') ax1.set_title("Gradient") ax2.imshow(markers, cmap=plt.cm.spectral, interpolation='nearest') ax2.set_title("Markers") ax3.imshow(labels, cmap=plt.cm.spectral, interpolation='nearest') ax3.set_title("Segmented") for ax in axes: ax.axis('off') fig.tight_layout() plt.show()
관련 권장 사항:
위 내용은 Python 디지털 영상처리 뼈대 추출 및 유역 알고리즘의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











PHP와 Python은 고유 한 장점과 단점이 있으며 선택은 프로젝트 요구와 개인 선호도에 달려 있습니다. 1.PHP는 대규모 웹 애플리케이션의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 데이터 과학 및 기계 학습 분야를 지배합니다.

CentOS 시스템에서 Pytorch 모델을 효율적으로 교육하려면 단계가 필요 하며이 기사는 자세한 가이드를 제공합니다. 1. 환경 준비 : 파이썬 및 종속성 설치 : CentOS 시스템은 일반적으로 파이썬을 사전 설치하지만 버전은 더 오래 될 수 있습니다. YUM 또는 DNF를 사용하여 Python 3 및 Upgrade Pip : Sudoyumupdatepython3 (또는 SudodnfupdatePython3), PIP3INSTALL-UPGRADEPIP를 설치하는 것이 좋습니다. CUDA 및 CUDNN (GPU 가속도) : NVIDIAGPU를 사용하는 경우 Cudatool을 설치해야합니다.

Docker는 Linux 커널 기능을 사용하여 효율적이고 고립 된 응용 프로그램 실행 환경을 제공합니다. 작동 원리는 다음과 같습니다. 1. 거울은 읽기 전용 템플릿으로 사용되며, 여기에는 응용 프로그램을 실행하는 데 필요한 모든 것을 포함합니다. 2. Union 파일 시스템 (Unionfs)은 여러 파일 시스템을 스택하고 차이점 만 저장하고 공간을 절약하고 속도를 높입니다. 3. 데몬은 거울과 컨테이너를 관리하고 클라이언트는 상호 작용을 위해 사용합니다. 4. 네임 스페이스 및 CGroup은 컨테이너 격리 및 자원 제한을 구현합니다. 5. 다중 네트워크 모드는 컨테이너 상호 연결을 지원합니다. 이러한 핵심 개념을 이해 함으로써만 Docker를 더 잘 활용할 수 있습니다.

CentOS 시스템에서 Pytorch GPU 가속도를 활성화하려면 Cuda, Cudnn 및 GPU 버전의 Pytorch를 설치해야합니다. 다음 단계는 프로세스를 안내합니다. CUDA 및 CUDNN 설치 CUDA 버전 호환성 결정 : NVIDIA-SMI 명령을 사용하여 NVIDIA 그래픽 카드에서 지원하는 CUDA 버전을보십시오. 예를 들어, MX450 그래픽 카드는 CUDA11.1 이상을 지원할 수 있습니다. Cudatoolkit 다운로드 및 설치 : NVIDIACUDATOOLKIT의 공식 웹 사이트를 방문하여 그래픽 카드에서 지원하는 가장 높은 CUDA 버전에 따라 해당 버전을 다운로드하여 설치하십시오. CUDNN 라이브러리 설치 :

Python과 JavaScript는 커뮤니티, 라이브러리 및 리소스 측면에서 고유 한 장점과 단점이 있습니다. 1) Python 커뮤니티는 친절하고 초보자에게 적합하지만 프론트 엔드 개발 리소스는 JavaScript만큼 풍부하지 않습니다. 2) Python은 데이터 과학 및 기계 학습 라이브러리에서 강력하며 JavaScript는 프론트 엔드 개발 라이브러리 및 프레임 워크에서 더 좋습니다. 3) 둘 다 풍부한 학습 리소스를 가지고 있지만 Python은 공식 문서로 시작하는 데 적합하지만 JavaScript는 MDNWebDocs에서 더 좋습니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Centos에서 Pytorch 버전을 선택할 때 다음과 같은 주요 요소를 고려해야합니다. 1. Cuda 버전 호환성 GPU 지원 : NVIDIA GPU가 있고 GPU 가속도를 사용하려면 해당 CUDA 버전을 지원하는 Pytorch를 선택해야합니다. NVIDIA-SMI 명령을 실행하여 지원되는 CUDA 버전을 볼 수 있습니다. CPU 버전 : GPU가 없거나 GPU를 사용하지 않으려면 Pytorch의 CPU 버전을 선택할 수 있습니다. 2. 파이썬 버전 Pytorch

Minio Object Storage : Centos System Minio 하의 고성능 배포는 Go Language를 기반으로 개발 한 고성능 분산 객체 저장 시스템입니다. Amazons3과 호환됩니다. Java, Python, JavaScript 및 Go를 포함한 다양한 클라이언트 언어를 지원합니다. 이 기사는 CentOS 시스템에 대한 Minio의 설치 및 호환성을 간단히 소개합니다. CentOS 버전 호환성 Minio는 다음을 포함하되 이에 국한되지 않는 여러 CentOS 버전에서 확인되었습니다. CentOS7.9 : 클러스터 구성, 환경 준비, 구성 파일 설정, 디스크 파티셔닝 및 미니를 다루는 완전한 설치 안내서를 제공합니다.

Centos Nginx를 설치하려면 다음 단계를 수행해야합니다. 개발 도구, PCRE-DEVEL 및 OPENSSL-DEVEL과 같은 종속성 설치. nginx 소스 코드 패키지를 다운로드하고 압축을 풀고 컴파일하고 설치하고 설치 경로를/usr/local/nginx로 지정하십시오. nginx 사용자 및 사용자 그룹을 만들고 권한을 설정하십시오. 구성 파일 nginx.conf를 수정하고 청취 포트 및 도메인 이름/IP 주소를 구성하십시오. Nginx 서비스를 시작하십시오. 종속성 문제, 포트 충돌 및 구성 파일 오류와 같은 일반적인 오류는주의를 기울여야합니다. 캐시를 켜고 작업자 프로세스 수 조정과 같은 특정 상황에 따라 성능 최적화를 조정해야합니다.
