> 백엔드 개발 > 파이썬 튜토리얼 > 텐서플로우 TFRecords 파일을 생성하고 읽는 방법

텐서플로우 TFRecords 파일을 생성하고 읽는 방법

不言
풀어 주다: 2018-05-02 14:26:56
원래의
1929명이 탐색했습니다.

이 글에서는 tensorflow TFRecords 파일을 생성하고 읽는 방법을 주로 소개합니다. 이제 필요한 친구들이 참고할 수 있도록 공유하겠습니다.

TensorFlow는 이론적으로 데이터를 균일하게 저장할 수 있는 TFRecords 형식을 제공합니다. , TFRecords는 모든 형태의 데이터를 저장할 수 있습니다.

TFRecords 파일의 데이터는 tf.train.Example 프로토콜 버퍼 형식으로 저장됩니다. 다음 코드는 tf.train.Example의 정의를 제공합니다.

message Example { 
  Features features = 1; 
}; 
message Features { 
  map<string, Feature> feature = 1; 
}; 
message Feature { 
  oneof kind { 
  BytesList bytes_list = 1; 
  FloatList float_list = 2; 
  Int64List int64_list = 3; 
} 
};
로그인 후 복사
re the tfrecords 파일을 생성하고 읽는 방법을 소개합니다. 파일 생성, 나머지 검증, 테스트 및 추론이 소개됩니다. .

다음으로 tfrecords 파일 읽기를 소개합니다:


from random import shuffle 
import numpy as np 
import glob 
import tensorflow as tf 
import cv2 
import sys 
import os 
 
# 因为我装的是CPU版本的,运行起来会有&#39;warning&#39;,解决方法入下,眼不见为净~ 
os.environ[&#39;TF_CPP_MIN_LOG_LEVEL&#39;] = &#39;2&#39; 
 
shuffle_data = True 
image_path = &#39;/path/to/image/*.jpg&#39; 
 
# 取得该路径下所有图片的路径,type(addrs)= list 
addrs = glob.glob(image_path) 
# 标签数据的获得具体情况具体分析,type(labels)= list 
labels = ... 
 
# 这里是打乱数据的顺序 
if shuffle_data: 
  c = list(zip(addrs, labels)) 
  shuffle(c) 
  addrs, labels = zip(*c) 
 
# 按需分割数据集 
train_addrs = addrs[0:int(0.7*len(addrs))] 
train_labels = labels[0:int(0.7*len(labels))] 
 
val_addrs = addrs[int(0.7*len(addrs)):int(0.9*len(addrs))] 
val_labels = labels[int(0.7*len(labels)):int(0.9*len(labels))] 
 
test_addrs = addrs[int(0.9*len(addrs)):] 
test_labels = labels[int(0.9*len(labels)):] 
 
# 上面不是获得了image的地址么,下面这个函数就是根据地址获取图片 
def load_image(addr): # A function to Load image 
  img = cv2.imread(addr) 
  img = cv2.resize(img, (224, 224), interpolation=cv2.INTER_CUBIC) 
  img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 
  # 这里/255是为了将像素值归一化到[0,1] 
  img = img / 255. 
  img = img.astype(np.float32) 
  return img 
 
# 将数据转化成对应的属性 
def _int64_feature(value):  
  return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) 
 
 
def _bytes_feature(value): 
  return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) 
 
 
def _float_feature(value): 
  return tf.train.Feature(float_list=tf.train.FloatList(value=[value])) 
 
# 下面这段就开始把数据写入TFRecods文件 
 
train_filename = &#39;/path/to/train.tfrecords&#39; # 输出文件地址 
 
# 创建一个writer来写 TFRecords 文件 
writer = tf.python_io.TFRecordWriter(train_filename) 
 
for i in range(len(train_addrs)): 
  # 这是写入操作可视化处理 
  if not i % 1000: 
    print(&#39;Train data: {}/{}&#39;.format(i, len(train_addrs))) 
    sys.stdout.flush() 
  # 加载图片 
  img = load_image(train_addrs[i]) 
 
  label = train_labels[i] 
 
  # 创建一个属性(feature) 
  feature = {&#39;train/label&#39;: _int64_feature(label), 
        &#39;train/image&#39;: _bytes_feature(tf.compat.as_bytes(img.tostring()))} 
 
  # 创建一个 example protocol buffer 
  example = tf.train.Example(features=tf.train.Features(feature=feature)) 
 
  # 将上面的example protocol buffer写入文件 
  writer.write(example.SerializeToString()) 
 
writer.close() 
sys.stdout.flush()
로그인 후 복사

관련 권장 사항:


TensorFlow를 사용하여 로지스틱 회귀 알고리즘을 구현하는 방법에 대한 자세한 설명


위 내용은 텐서플로우 TFRecords 파일을 생성하고 읽는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

관련 라벨:
원천:php.cn
본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
인기 튜토리얼
더>
최신 다운로드
더>
웹 효과
웹사이트 소스 코드
웹사이트 자료
프론트엔드 템플릿