캐싱 알고리즘을 구현한 JS의 예
이 글에서는 주로 JS(FIFO/LRU)에서 구현한 캐싱 알고리즘의 예를 소개하고 참고하겠습니다.
FIFO
가장 간단한 캐싱 알고리즘으로 캐시 상한을 설정합니다. 캐시 상한에 도달하면 선입선출 전략에 따라 제거되고 새로운 k-v가 추가됩니다.
객체는 캐시로 사용됩니다. 배열은 레코드가 객체에 추가되는 순서와 일치하여 상한에 도달했는지 확인합니다. 상한에 도달하면 배열의 첫 번째 요소 키가 가져옵니다. 이는 객체의 키 값을 삭제하는 것과 같습니다.
/** * FIFO队列算法实现缓存 * 需要一个对象和一个数组作为辅助 * 数组记录进入顺序 */ class FifoCache{ constructor(limit){ this.limit = limit || 10 this.map = {} this.keys = [] } set(key,value){ let map = this.map let keys = this.keys if (!Object.prototype.hasOwnProperty.call(map,key)) { if (keys.length === this.limit) { delete map[keys.shift()]//先进先出,删除队列第一个元素 } keys.push(key) } map[key] = value//无论存在与否都对map中的key赋值 } get(key){ return this.map[key] } } module.exports = FifoCache
LRU
LRU(최근에 사용됨, 최근에 사용됨) 알고리즘입니다. 이 알고리즘의 관점은 캐시가 가득 차면 최근에 액세스한 데이터가 나중에 액세스될 가능성이 더 크다는 것입니다.
알고리즘 구현 아이디어: 이중 연결 리스트의 데이터 구조를 기반으로, 가득 차 있지 않을 때 새로운 k-v가 연결 리스트의 선두에 배치되고, 캐시에 있는 k-v를 얻을 때마다 k-v가 캐시가 가득 차면 마지막 캐시가 먼저 제거됩니다.
이중 연결 목록의 특징은 헤드 및 테일 포인터가 있다는 것입니다. 각 노드에는 각각 이전 노드와 다음 노드를 가리키는 prev(선행자) 및 다음(후행) 포인터가 있습니다.
핵심 사항: 이중 연결 리스트 삽입 과정에서 순서 문제에 주의하세요. 연결 리스트를 연속적으로 유지하면서 포인터가 먼저 처리되어야 하며, 마지막으로 원래 포인터가 새로 삽입된 요소를 가리킨다는 점에 주의하세요. 코드 구현은 제가 댓글에서 설명한 순서에 주의하세요!
class LruCache { constructor(limit) { this.limit = limit || 10 //head 指针指向表头元素,即为最常用的元素 this.head = this.tail = undefined this.map = {} this.size = 0 } get(key, IfreturnNode) { let node = this.map[key] // 如果查找不到含有`key`这个属性的缓存对象 if (node === undefined) return // 如果查找到的缓存对象已经是 tail (最近使用过的) if (node === this.head) { //判断该节点是不是是第一个节点 // 是的话,皆大欢喜,不用移动元素,直接返回 return returnnode ? node : node.value } // 不是头结点,铁定要移动元素了 if (node.prev) { //首先要判断该节点是不是有前驱 if (node === this.tail) { //有前驱,若是尾节点的话多一步,让尾指针指向当前节点的前驱 this.tail = node.prev } //把当前节点的后继交接给当前节点的前驱去指向。 node.prev.next = node.next } if (node.next) { //判断该节点是不是有后继 //有后继的话直接让后继的前驱指向当前节点的前驱 node.next.prev = node.prev //整个一个过程就是把当前节点拿出来,并且保证链表不断,下面开始移动当前节点了 } node.prev = undefined //移动到最前面,所以没了前驱 node.next = this.head //注意!!! 这里要先把之前的排头给接到手!!!!让当前节点的后继指向原排头 if (this.head) { this.head.prev = node //让之前的排头的前驱指向现在的节点 } this.head = node //完成了交接,才能执行此步!不然就找不到之前的排头啦! return IfreturnNode ? node : node.value } set(key, value) { // 之前的算法可以直接存k-v但是现在要把简单的 k-v 封装成一个满足双链表的节点 //1.查看是否已经有了该节点 let node = this.get(key, true) if (!node) { if (this.size === this.limit) { //判断缓存是否达到上限 //达到了,要删最后一个节点了。 if (this.tail) { this.tail = this.tail.prev this.tail.prev.next = undefined //平滑断链之后,销毁当前节点 this.tail.prev = this.tail.next = undefined this.map[this.tail.key] = undefined //当前缓存内存释放一个槽位 this.size-- } node = { key: key } this.map[key] = node if(this.head){//判断缓存里面是不是有节点 this.head.prev = node node.next = this.head }else{ //缓存里没有值,皆大欢喜,直接让head指向新节点就行了 this.head = node this.tail = node } this.size++//减少一个缓存槽位 } } //节点存不存在都要给他重新赋值啊 node.value = value } } module.exports = LruCache
구체적인 아이디어는 얻으려는 노드가 헤드 노드가 아닌 경우(즉, 이미 가장 최근에 사용한 노드이고 노드 위치를 이동할 필요가 없는 경우) 먼저 다음 작업을 수행해야 한다는 것입니다. 링크 끊기 작업을 원활하게 하고 포인터 사이의 관계를 처리하고 꺼내기 연결 리스트에 삽입하려면 프런트 노드로 이동해야 합니다.
위 내용은 제가 여러분을 위해 정리한 내용입니다. 앞으로 도움이 되길 바랍니다.
관련 기사:
Reverse Ajax를 30분 만에 빠르게 마스터하세요
위 내용은 캐싱 알고리즘을 구현한 JS의 예의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

위에 작성 및 저자의 개인적인 이해: 현재 전체 자율주행 시스템에서 인식 모듈은 중요한 역할을 합니다. 자율주행 시스템의 제어 모듈은 적시에 올바른 판단과 행동 결정을 내립니다. 현재 자율주행 기능을 갖춘 자동차에는 일반적으로 서라운드 뷰 카메라 센서, 라이더 센서, 밀리미터파 레이더 센서 등 다양한 데이터 정보 센서가 장착되어 다양한 방식으로 정보를 수집하여 정확한 인식 작업을 수행합니다. 순수 비전을 기반으로 한 BEV 인식 알고리즘은 하드웨어 비용이 저렴하고 배포가 용이하며, 출력 결과를 다양한 다운스트림 작업에 쉽게 적용할 수 있어 업계에서 선호됩니다.

C++의 기계 학습 알고리즘이 직면하는 일반적인 과제에는 메모리 관리, 멀티스레딩, 성능 최적화 및 유지 관리 가능성이 포함됩니다. 솔루션에는 스마트 포인터, 최신 스레딩 라이브러리, SIMD 지침 및 타사 라이브러리 사용은 물론 코딩 스타일 지침 준수 및 자동화 도구 사용이 포함됩니다. 실제 사례에서는 Eigen 라이브러리를 사용하여 선형 회귀 알고리즘을 구현하고 메모리를 효과적으로 관리하며 고성능 행렬 연산을 사용하는 방법을 보여줍니다.

C++정렬 함수의 맨 아래 계층은 병합 정렬을 사용하고 복잡도는 O(nlogn)이며 빠른 정렬, 힙 정렬 및 안정 정렬을 포함한 다양한 정렬 알고리즘 선택을 제공합니다.

인공지능(AI)과 법 집행의 융합은 범죄 예방 및 탐지의 새로운 가능성을 열어줍니다. 인공지능의 예측 기능은 범죄 행위를 예측하기 위해 CrimeGPT(범죄 예측 기술)와 같은 시스템에서 널리 사용됩니다. 이 기사에서는 범죄 예측에서 인공 지능의 잠재력, 현재 응용 프로그램, 직면한 과제 및 기술의 가능한 윤리적 영향을 탐구합니다. 인공 지능 및 범죄 예측: 기본 CrimeGPT는 기계 학습 알고리즘을 사용하여 대규모 데이터 세트를 분석하고 범죄가 발생할 가능성이 있는 장소와 시기를 예측할 수 있는 패턴을 식별합니다. 이러한 데이터 세트에는 과거 범죄 통계, 인구 통계 정보, 경제 지표, 날씨 패턴 등이 포함됩니다. 인간 분석가가 놓칠 수 있는 추세를 식별함으로써 인공 지능은 법 집행 기관에 권한을 부여할 수 있습니다.

Oracle의 DECODE 함수는 쿼리 문의 다양한 조건에 따라 다양한 결과를 반환하는 데 자주 사용되는 조건식입니다. 이 기사에서는 DECODE 함수의 구문, 사용법 및 샘플 코드를 자세히 소개합니다. 1. DECODE 함수 구문 DECODE(expr,search1,result1[,search2,result2,...,default]) expr: 비교할 표현식 또는 필드입니다. 검색1,

Go 언어의 들여쓰기 사양 및 예 Go 언어는 간결하고 명확한 구문으로 알려져 있으며, 들여쓰기 사양은 코드의 가독성과 아름다움에 중요한 역할을 합니다. 이번 글에서는 Go 언어의 들여쓰기 사양을 소개하고, 구체적인 코드 예시를 통해 자세히 설명하겠습니다. 들여쓰기 사양 Go 언어에서는 들여쓰기에 공백 대신 탭이 사용됩니다. 각 들여쓰기 수준은 하나의 탭이며 일반적으로 4칸의 너비로 설정됩니다. 이러한 사양은 코딩 스타일을 통합하고 팀이 함께 작업하여 컴파일할 수 있도록 합니다.

01 전망 요약 현재로서는 탐지 효율성과 탐지 결과 간의 적절한 균형을 이루기가 어렵습니다. 우리는 광학 원격 탐사 이미지에서 표적 감지 네트워크의 효과를 향상시키기 위해 다층 특징 피라미드, 다중 감지 헤드 전략 및 하이브리드 주의 모듈을 사용하여 고해상도 광학 원격 감지 이미지에서 표적 감지를 위한 향상된 YOLOv5 알고리즘을 개발했습니다. SIMD 데이터 세트에 따르면 새로운 알고리즘의 mAP는 YOLOv5보다 2.2%, YOLOX보다 8.48% 우수하여 탐지 결과와 속도 간의 균형이 더 잘 이루어졌습니다. 02 배경 및 동기 원격탐사 기술의 급속한 발전으로 항공기, 자동차, 건물 등 지구 표면의 많은 물체를 묘사하기 위해 고해상도 광학 원격탐사 영상이 활용되고 있다. 원격탐사 이미지 해석에서 물체 감지

1. 58초상화 플랫폼 구축 배경 먼저, 58초상화 플랫폼 구축 배경에 대해 말씀드리겠습니다. 1. 기존 프로파일링 플랫폼의 전통적인 사고로는 더 이상 충분하지 않습니다. 사용자 프로파일링 플랫폼을 구축하려면 여러 비즈니스 라인의 데이터를 통합하여 정확한 사용자 초상화를 구축하는 데이터 웨어하우스 모델링 기능이 필요합니다. 그리고 알고리즘 측면의 기능을 제공해야 하며, 마지막으로 사용자 프로필 데이터를 효율적으로 저장, 쿼리 및 공유하고 프로필 서비스를 제공할 수 있는 데이터 플랫폼 기능도 있어야 합니다. 자체 구축한 비즈니스 프로파일링 플랫폼과 중간 사무실 프로파일링 플랫폼의 주요 차이점은 자체 구축한 프로파일링 플랫폼이 단일 비즈니스 라인에 서비스를 제공하고 필요에 따라 사용자 정의할 수 있다는 것입니다. 모델링하고 보다 일반적인 기능을 제공합니다. 2.58 Zhongtai 초상화 구성 배경의 사용자 초상화
