javascript_javascript 기술에서 일반적으로 사용되는 클래식 알고리즘 예제에 대한 자세한 설명
이 기사의 예에서는 JavaScript의 일반적인 알고리즘을 설명합니다. 참고하실 수 있도록 모든 사람과 공유하세요. 자세한 내용은 다음과 같습니다.
초급 알고리즘-선형 검색-시간 복잡도 O(n)--알고리즘 세계의 HelloWorld
와 동일//线性搜索(入门HelloWorld) //A为数组,x为要搜索的值 function linearSearch(A, x) { for (var i = 0; i < A.length; i++) { if (A[i] == x) { return i; } } return -1; }
이진 검색(절반 검색이라고도 함) - 정렬된 선형 구조에 적합 - 시간 복잡도 O(logN)
//二分搜索 //A为已按"升序排列"的数组,x为要查询的元素 //返回目标元素的下标 function binarySearch(A, x) { var low = 0, high = A.length - 1; while (low <= high) { var mid = Math.floor((low + high) / 2); //下取整 if (x == A[mid]) { return mid; } if (x < A[mid]) { high = mid - 1; } else { low = mid + 1; } } return -1; }
버블 정렬 -- 시간 복잡도 O(n^2)
//冒泡排序 function bubbleSort(A) { for (var i = 0; i < A.length; i++) { var sorted = true; //注意:内循环是倒着来的 for (var j = A.length - 1; j > i; j--) { if (A[j] < A[j - 1]) { swap(A, j, j - 1); sorted = false; } } if (sorted) { return; } } }
선택 정렬 -- 시간 복잡도 O(n^2)
//选择排序 //思路:找到最小值的下标记下来,再交换 function selectionSort(A) { for (var i = 0; i < A.length - 1; i++) { var k = i; for (var j = i + 1; j < A.length; j++) { if (A[j] < A[k]) { k = j; } } if (k != i) { var t = A[k]; A[k] = A[i]; A[i] = t; println(A); } } return A; }
삽입 정렬 -- 시간 복잡도 O(n^2)
//插入排序 //假定当前元素之前的元素已经排好序,先把自己的位置空出来, //然后前面比自己大的元素依次向后移,直到空出一个"坑", //然后把目标元素插入"坑"中 function insertSort(A) { for (var i = 1; i < A.length; i++) { var x = A[i]; for (var j = i - 1; j >= 0 && A[j] > x; j--) { A[j + 1] = A[j]; } if (A[j + 1] != x) { A[j + 1] = x; println(A); } } return A; }
문자열 반전 -- 시간 복잡도 O(logN)
//字符串反转(比如:ABC -> CBA) function inverse(s) { var arr = s.split(''); var i = 0, j = arr.length - 1; while (i < j) { var t = arr[i]; arr[i] = arr[j]; arr[j] = t; i++; j--; } return arr.join(''); }
안정성 순위에 대한 결론:
비교 기반의 단순 정렬 알고리즘, 즉 시간 복잡도가 O(N^2)인 정렬 알고리즘으로 일반적으로 안정적인 정렬이라고 볼 수 있습니다
병합 정렬, 힙 정렬, 버킷 정렬(일반적으로 이러한 알고리즘의 시간 복잡도는 n*LogN으로 최적화될 수 있음)과 같은 기타 고급 정렬 알고리즘은 일반적으로 불안정한 정렬로 간주될 수 있습니다.
단일 연결 목록구현
<script type="text/javascript"> function print(msg) { document.write(msg); } function println(msg) { print(msg + "<br/>"); } //节点类 var Node = function (v) { this.data = v; //节点值 this.next = null; //后继节点 } //单链表 var SingleLink = function () { this.head = new Node(null); //约定头节点仅占位,不存值 //插入节点 this.insert = function (v) { var p = this.head; while (p.next != null) { p = p.next; } p.next = new Node(v); } //删除指定位置的节点 this.removeAt = function (n) { if (n <= 0) { return; } var preNode = this.getNodeByIndex(n - 1); preNode.next = preNode.next.next; } //取第N个位置的节点(约定头节点为第0个位置) //N大于链表元素个数时,返回最后一个元素 this.getNodeByIndex = function (n) { var p = this.head; var i = 0; while (p.next != null && i < n) { p = p.next; i++; } return p; } //查询值为V的节点, //如果链表中有多个相同值的节点, //返回第一个找到的 this.getNodeByValue = function (v) { var p = this.head; while (p.next != null) { p = p.next; if (p.data == v) { return p; } } return null; } //打印输出所有节点 this.print = function () { var p = this.head; while (p.next != null) { p = p.next; print(p.data + " "); } println(""); } } //测试单链表L中是否有重复元素 function hasSameValueNode(singleLink) { var i = singleLink.head; while (i.next != null) { i = i.next; var j = i; while (j.next != null) { j = j.next; if (i.data == j.data) { return true; } } } return false; } //单链表元素反转 function reverseSingleLink(singleLink) { var arr = new Array(); var p = singleLink.head; //先跑一遍,把所有节点放入数组 while (p.next != null) { p = p.next; arr.push(p.data); } var newLink = new SingleLink(); //再从后向前遍历数组,加入新链表 for (var i = arr.length - 1; i >= 0; i--) { newLink.insert(arr[i]); } return newLink; } var linkTest = new SingleLink(); linkTest.insert('A'); linkTest.insert('B'); linkTest.insert('C'); linkTest.insert('D'); linkTest.print();//A B C D var newLink = reverseSingleLink(linkTest); newLink.print();//D C B A </script>
인접 행렬 및 인접 목록 선택에 대해
:
인접 행렬과 인접 리스트는 그래프의 기본 저장 방식입니다.
희소 그래프의 경우
(즉, 모서리가 꼭짓점보다 훨씬 작은 경우) 인접 목록 저장을 사용하는 것이 더 적합합니다(행렬 N*N에 비해 인접 목록은 값이 있는 가장자리와 꼭지점을 사용하며 null 값을 저장하지 않습니다. 더 효율적인 저장)
밀집 그래프
힙:
거의 완전한 이진 트리: 이진 트리
가장 오른쪽 위치에 하나 또는 여러 개의 리프가 누락될 수 있다는 점만 제외됩니다. 물리적 저장 측면에서 배열을 사용하여 A[j]의 정점에 왼쪽 및 오른쪽 자식 노드가 있는 경우 왼쪽 노드는 A[2j]이고 오른쪽 노드는 A[2j 1]입니다. A[j/2]에 저장된 A[j]의 상위 정점 힙: 자체는 거의 완전한 이진 트리이며, 상위 노드의 값은 하위 노드
의 값보다 작지 않습니다. 응용 시나리오: 우선 순위 대기열, 최대 또는 하위 최대 값 찾기 및 우선 순위 대기열에 새 요소 삽입.참고: 아래에 설명된 모든 힙에서는 인덱스 0의 요소만 발생하고 유효한 요소는 아래 첨자 1부터 시작하는 것으로 합의되었습니다.
힙의 정의에 따라 다음 코드를 사용하여 배열이 힙인지 테스트할 수 있습니다.
//测试数组H是否为堆 //(约定有效元素从下标1开始) //时间复杂度O(n) function isHeap(H) { if (H.length <= 1) { return false; } var half = Math.floor(H.length / 2); //根据堆的性质,循环上限只取一半就够了 for (var i = 1; i <= half; i++) { //如果父节点,比任何一个子节点 小,即违反堆定义 if (H[i] < H[2 * i] || H[i] < H[2 * i + 1]) { return false; } } return true; }
노드 조정 선별
어떤 경우에는 힙에 있는 요소의 값이 변경되면(예: 10,8,9,7이 10,8,9,20이 된 후 20을 위쪽으로 조정해야 함) 더 이상 충족되지 않습니다. 힙의 정의를 상향 조정해야 하는 경우 다음 코드를 사용하여
//堆中的节点上移 //(约定有效元素从下标1开始) function siftUp(H, i) { if (i <= 1) { return; } for (var j = i; j > 1; j = Math.floor(j / 2)) { var k = Math.floor(j / 2); //发现 子节点 比 父节点大,则与父节点交换位置 if (H[j] > H[k]) { var t = H[j]; H[j] = H[k]; H[k] = t; } else { //说明已经符合堆定义,调整结束,退出 return; } } }
siftDown으로 노드를 하향 조정합니다(상향 조정이 있으니 당연히 하향 조정이 발생합니다)
//堆中的节点下移 //(约定有效元素从下标1开始) //时间复杂度O(logN) function siftDown(H, i) { if (2 * i > H.length) { //叶子节点,就不用再向下移了 return; } for (var j = 2 * i; j < H.length; j = 2 * j) { //将j定位到 二个子节点中较大的那个上(很巧妙的做法) if (H[j + 1] > H[j]) { j++; } var k = Math.floor(j / 2); if (H[k] < H[j]) { var t = H[k]; H[k] = H[j]; H[j] = t; } else { return; } } }
힙에 새 요소 추가
//向堆H中添加元素x //时间复杂度O(logN) function insert(H, x) { //思路:先在数组最后加入目标元素x H.push(x); //然后向上推 siftUp(H, H.length - 1); }
힙에서 요소 제거
//删除堆H中指定位置i的元素 //时间复杂度O(logN) function remove(H, i) { //思路:先把位置i的元素与最后位置的元素n交换 //然后数据长度减1(这样就把i位置的元素给干掉了,但是整个堆就被破坏了) //需要做一个决定:最后一个元素n需要向上调整,还是向下调整 //依据:比如比原来该位置的元素大,则向上调整,反之向下调整 var x = H[i]; //先把原来i位置的元素保护起来 //把最后一个元素放到i位置 //同时删除最后一个元素(js语言的优越性体现!) H[i] = H.pop(); var n = H.length - 1; if (i == n + 1) { //如果去掉的正好是最后二个元素之一, //无需再调整 return ; } if (H[i] > x) { siftUp(H, i); } else { siftDown(H, i); } } //从堆中删除最大项 //返回最大值 //时间复杂度O(logN) function deleteMax(H) { var x = H[1]; remove(H, 1); return x; }
힙 정렬
:이것은 매우 영리한 정렬 알고리즘의 핵심은 데이터 구조 "힙"(첫 번째 요소가 가장 커야 함)의 특성을 최대한 활용하는 데 있으며 각 요소는 시간 재테스트를 통해 위 또는 아래로 이동할 수 있습니다. 공간적으로는 상대적으로 낮으며, 추가 저장 공간이 필요하지 않고 배열 자체 내에서 요소를 교환하면 됩니다.
사물:
1. 먼저 첫 번째 요소(즉, 가장 큰 요소)를 마지막 요소로 바꿉니다. 목적은 최대값을 맨 아래로 가라앉히고 다음 라운드에서 무시하는 것입니다.
2. 1 이후 나머지 요소는 일반적으로 더 이상 힙이 아닙니다. 이때 siftDown을 사용하여 새로운 첫 번째 요소를 아래쪽으로 조정하면 새로운 최대 요소가 자연스럽게 첫 번째 요소의 위치로 올라갑니다
3. 1과 2를 반복하면 큰 요소들이 하나씩 아래쪽으로 가라앉고 마침내 전체 배열이 정리됩니다.
//堆中的节点下移 //(约定有效元素从下标1开始) //i为要调整的元素索引 //n为待处理的有效元素下标范围上限值 //时间复杂度O(logN) function siftDown(H, i, n) { if (n >= H.length) { n = H.length; } if (2 * i > n) { //叶子节点,就不用再向下移了 return; } for (var j = 2 * i; j < n; j = 2 * j) { //将j定位到 二个子节点中较大的那个上(很巧妙的做法) if (H[j + 1] > H[j]) { j++; } var k = Math.floor(j / 2); if (H[k] < H[j]) { var t = H[k]; H[k] = H[j]; H[j] = t; } else { return; } } } //对数组的前n个元素进行创建堆的操作 function makeHeap(A, n) { if (n >= A.length) { n = A.length; } for (var i = Math.floor(n / 2); i >= 1; i--) { siftDown(A, i, n); } } //堆排序(非降序排列) //时间复杂度O(nlogN) function heapSort(H) { //先建堆 makeHeap(H, H.length); for (var j = H.length - 1; j >= 2; j--) { //首元素必然是最大的 //将最大元素与最后一个元素互换, //即将最大元素沉底,下一轮不再考虑 var x = H[1]; H[1] = H[j]; H[j] = x; //互换后,剩下的元素不再满足堆定义, //把新的首元素下调(以便继续维持堆的"形状") //调整完后,剩下元素中的最大值必须又浮到了第一位 //进入下一轮循环 siftDown(H, 1, j - 1); } return H; }
힙을 쌓는 것에 관해서는 원리를 이해하면 아이디어를 거꾸로 해서도 할 수 있습니다
function makeHeap2(A, n) { if (n >= A.length) { n = A.length; } for (var i = Math.floor(n / 2); i <= n; i++) { siftUp(A, i); } }
분리된 집합 검색 및 병합
//定义节点Node类 var Node = function (v, p) { this.value = v; //节点的值 this.parent = p; //节点的父节点 this.rank = 0; //节点的秩(默认为0) } //查找包含节点x的树根节点 var find = function (x) { var y = x; while (y.parent != null) { y = y.parent; } var root = y; y = x; //沿x到根进行“路径压缩” while (y.parent != null) { //先把父节点保存起来,否则下一行调整后,就弄丢了 var w = y.parent; //将目标节点挂到根下 y.parent = root; //再将工作指针,还原到 目标节点原来的父节点上, //继续向上逐层压缩 y = w } return root; } //合并节点x,y对应的两个树 //时间复杂度O(m) - m为待合并的子集合数量 var union = function (x, y) { //先找到x所属集合的根 var u = find(x); //再找到y所属集合的根 var v = find(y); //把rank小的集合挂到rank大的集合上 if (u.rank <= v.rank) { u.parent = v; if (u.rank == v.rank) { //二个集合的rank不分伯仲时 //给"胜"出方一点奖励,rank+1 v.rank += 1; } } else { v.parent = u; } }
유도 방법
:우선 정렬의 두 가지 재귀 구현을 살펴보겠습니다
//选择排序的递归实现 //调用示例: selectionSort([3,2,1],0) function selectionSortRec(A, i) { var n = A.length - 1; if (i < n) { var k = i; for (var j = i + 1; j <= n; j++) { if (A[j] < A[k]) { k = j } } if (k != i) { var t = A[k]; A[k] = A[i]; A[i] = t; } selectionSortRec(A, i + 1); } } //插入排序递归实现 //调用示例:insertSortRec([4,3,2,1],3); function insertSortRec(A, i) { if (i > 0) { var x = A[i]; insertSortRec(A, i - 1); var j = i - 1; while (j >= 0 && A[j] > x) { A[j + 1] = A[j]; j--; } A[j + 1] = x; } }
재귀 프로그램은 일반적으로 이해하기 쉽고 코드도 구현하기 쉽습니다. 두 가지 작은 예를 살펴보겠습니다.
배열에서 최대값 찾기
//在数组中找最大值(递归实现) function findMax(A, i) { if (i == 0) { return A[0]; } var y = findMax(A, i - 1); var x = A[i - 1]; return y > x ? y : x; } var A = [1,2,3,4,5,6,7,8,9]; var test = findMax(A,A.length); alert(test);//返回9
오름차순으로 정렬된 배열이 있습니다. 배열에 두 개의 숫자가 있는지, 그 합이 정확히 x인지 확인하세요.
//5.33 递归实现 //A为[1..n]已经排好序的数组 //x为要测试的和 //如果存在二个数的和为x,则返回true,否则返回false function sumX(A, i, j, x) { if (i >= j) { return false; } if (A[i] + A[j] == x) { return true; } else if (A[i] + A[j] < x) { //i后移 return sumX(A, i + 1, j, x); } else { //j前移 return sumX(A, i, j - 1, x); } } var A = [1, 2, 3, 4, 5, 6, 7, 8]; var test1 = sumX(A,0,A.length-1,9); alert(test1); //返回true
递归程序虽然思路清晰,但通常效率不高,一般来讲,递归实现,都可以改写成非递归实现,上面的代码也可以写成:
//5.33 非递归实现 function sumX2(A, x) { var i = 0, j = A.length - 1; while (i < j) { if (A[i] + A[j] == x) { return true; } else if (A[i] + A[j] < x) { //i后移 i++; } else { //j前移 j--; } } return false; } var A = [1, 2, 3, 4, 5, 6, 7, 8]; var test2 = sumX2(A,9); alert(test2);//返回true
递归并不总代表低效率,有些场景中,递归的效率反而更高,比如计算x的m次幂,常规算法,需要m次乘法运算,下面的算法,却将时间复杂度降到了O(logn)
//计算x的m次幂(递归实现) //时间复杂度O(logn) function expRec(x, m) { if (m == 0) { return 1; } var y = expRec(x, Math.floor(m / 2)); y = y * y; if (m % 2 != 0) { y = x * y } return y; }
当然,这其中并不光是递归的功劳,其效率的改进 主要依赖于一个数学常识: x^m = [x^(m/2)]^2,关于这个问题,还有一个思路很独特的非递归解法,巧妙的利用了二进制的特点
//将10进制数转化成2进制 function toBin(dec) { var bits = []; var dividend = dec; var remainder = 0; while (dividend >= 2) { remainder = dividend % 2; bits.push(remainder); dividend = (dividend - remainder) / 2; } bits.push(dividend); bits.reverse(); return bits.join(""); } //计算x的m次幂(非递归实现) //很独特的一种解法 function exp(x, m) { var y = 1; var bin = toBin(m).split(''); //先将m转化成2进制形式 for (var j = 0; j < bin.length; j++) { y = y * 2; //如果2进制的第j位是1,则再*x if (bin[j] == "1") { y = x * y } } return y; } //println(expRec(2, 5)); //println(exp(2, 5));
再来看看经典的多项式求值问题:
给定一串实数An,An-1,...,A1,A0 和一个实数X,计算多项式Pn(x)的值
著名的Horner公式:
已经如何计算:
显然有:
这样只需要 N次乘法+N次加法
//多项式求值 //N次乘法+N次加法搞定,伟大的改进! function horner(A, x) { var n = A.length - 1 var p = A[n]; for (var j = 0; j < n; j++) { p = x * p + A[n - j - 1]; } return p; } //计算: y(2) = 3x^3 + 2x^2 + x -1; var A = [-1, 1, 2, 3]; var y = horner(A, 2); alert(y);//33
多数问题:
一个元素个数为n的数组,希望快速找出其中大于出现次数>n/2的元素(该元素也称为多数元素)。通常可用于选票系统,快速判定某个候选人的票数是否过半。最优算法如下:
//找出数组A中“可能存在”的多数元素 function candidate(A, m) { var count = 1, c = A[m], n = A.length - 1; while (m < n && count > 0) { m++; if (A[m] == c) { count++; } else { count--; } } if (m == n) { return c; } else { return candidate(A, m + 1); } } //寻找多数元素 //时间复杂度O(n) function majority(A) { var c = candidate(A, 0); var count = 0; //找出的c,可能是多数元素,也可能不是, //必须再数一遍,以确保结果正确 for (var i = 0; i < A.length; i++) { if (A[i] == c) { count++; } } //如果过半,则确定为多数元素 if (count > Math.floor(A.length / 2)) { return c; } return null; } var m = majority([3, 2, 3, 3, 4, 3]); alert(m);
以上算法基于这样一个结论:在原序列中去除两个不同的元素后,那么在原序列中的多数元素在新序列中还是多数元素
证明如下:
如果原序列的元素个数为n,多数元素出现的次数为x,则 x/n > 1/2
去掉二个不同的元素后,
a)如果去掉的元素中不包括多数元素,则新序列中 ,原先的多数元素个数/新序列元素总数 = x/(n-2) ,因为x/n > 1/2 ,所以 x/(n-2) 也必然>1/2
b)如果去掉的元素中包含多数元素,则新序列中 ,原先的多数元素个数/新序列元素总数 = (x-1)/(n-2) ,因为x/n > 1/2 =》 x>n/2 代入 (x-1)/(n-2) 中,
有 (x-1)/(n-2) > (n/2 -1)/(n-2) = 2(n-2)/(n-2) = 1/2
下一个问题:全排列
function swap(A, i, j) { var t = A[i]; A[i] = A[j]; A[j] = t; } function println(msg) { document.write(msg + "<br/>"); } //全排列算法 function perm(P, m) { var n = P.length - 1; if (m == n) { //完成一个新排列时,输出 println(P); return; } for (var j = m; j <= n; j++) { //将起始元素与后面的每个元素交换 swap(P, j, m); //在前m个元素已经排好的基础上 //再加一个元素进行新排列 perm(P, m + 1); //把j与m换回来,恢复递归调用前的“现场", //否则因为递归调用前,swap已经将原顺序破坏了, //导致后面生成排序时,可能生成重复 swap(P, j, m); } } perm([1, 2, 3], 0); //1,2,3 //1,3,2 //2,1,3 //2,3,1 //3,2,1 //3,1,2
分治法:
要点:将问题划分成二个子问题时,尽量让子问题的规模大致相等。这样才能最大程度的体现一分为二,将问题规模以对数折半缩小的优势。
//打印输出(调试用) function println(msg) { document.write(msg + "<br/>"); } //数组中i,j位置的元素交换(辅助函数) function swap(A, i, j) { var t = A[i]; A[i] = A[j]; A[j] = t; } //寻找数组A中的最大、最小值(分治法实现) function findMinMaxDiv(A, low, high) { //最小规模子问题的解 if (high - low == 1) { if (A[low] < A[high]) { return [A[low], A[high]]; } else { return [A[high], A[low]]; } } var mid = Math.floor((low + high) / 2); //在前一半元素中寻找子问题的解 var r1 = findMinMaxDiv(A, low, mid); //在后一半元素中寻找子问题的解 var r2 = findMinMaxDiv(A, mid + 1, high); //把二部分的解合并 var x = r1[0] > r2[0] ? r2[0] : r1[0]; var y = r1[1] > r2[1] ? r1[1] : r2[1]; return [x, y]; } var r = findMinMaxDiv([1, 2, 3, 4, 5, 6, 7, 8], 0, 7); println(r); //1,8 //二分搜索(分治法实现) //输入:A为已按非降序排列的数组 //x 为要搜索的值 //low,high搜索的起、止索引范围 //返回:如果找到,返回下标,否则返回-1 function binarySearchDiv(A, x, low, high) { if (low > high) { return -1; } var mid = Math.floor((low + high) / 2); if (x == A[mid]) { return mid; } else if (x < A[mid]) { return binarySearchDiv(A, x, low, mid - 1); } else { return binarySearchDiv(A, x, mid + 1, high); } } var f = binarySearchDiv([1, 2, 3, 4, 5, 6, 7], 4, 0, 6); println(f); //3 //将数组A,以low位置的元素为界,划分为前后二半 //n为待处理的索引范围上限 function split(A, low, n) { if (n >= A.length - 1) { n = A.length - 1; } var i = low; var x = A[low]; //二个指针一前一后“跟随”, //最前面的指针发现有元素比分界元素小时,换到前半部 //后面的指针再紧跟上,“夫唱妇随”一路到头 for (var j = low + 1; j <= n; j++) { if (A[j] <= x) { i++; if (i != j) { swap(A, i, j); } } } //经过上面的折腾后,除low元素外,其它的元素均以就位 //最后需要把low与最后一个比low位置小的元素交换, //以便把low放在分水岭位置上 swap(A, low, i); return [A, i]; } var A = [5, 1, 2, 6, 3]; var b = split(A, 0, A.length - 1); println(b[0]); //3,1,2,5,6 //快速排序 function quickSort(A, low, high) { var w = high; if (low < high) { var t = split(A, low, w); //分治思路,先分成二半 w = t[1]; //在前一半求解 quickSort(A, low, w - 1); //在后一半求解 quickSort(A, w + 1, high); } } var A = [5, 6, 4, 7, 3]; quickSort(A, 0, A.length - 1); println(A); //3,4,5,6,7
split算法的思想应用:
设A[1..n]是一个整数集,给出一算法重排数组A中元素,使得所有的负整数放到所有非负整数的左边,你的算法的运行时间应当为Θ(n)
function sort1(A) { var i = 0, j = A.length - 1; while (i < j) { if (A[i] >= 0 && A[j] >= 0) { j--; } else if (A[i] < 0 && A[j] < 0) { i++; } else if (A[i] > 0 && A[j] < 0) { swap(A, i, j); i++; j--; } else { i++; j--; } } } function sort2(A) { if (A.length <= 1) { return; } var i = 0; for (var j = i + 1; j < A.length; j++) { if (A[j] < 0 && A[i] >= 0) { swap(A, i, j); i++; } } } var a = [1, -2, 3, -4, 5, -6, 0]; sort1(a); println(a);//-6,-2,-4,3,5,1,0 var b = [1, -2, 3, -4, 5, -6, 0]; sort2(b); println(b);//-2,-4,-6,1,5,3,0
希望本文所述对大家JavaScript程序设计有所帮助。

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











위에 작성 및 저자의 개인적인 이해: 현재 전체 자율주행 시스템에서 인식 모듈은 중요한 역할을 합니다. 자율주행 시스템의 제어 모듈은 적시에 올바른 판단과 행동 결정을 내립니다. 현재 자율주행 기능을 갖춘 자동차에는 일반적으로 서라운드 뷰 카메라 센서, 라이더 센서, 밀리미터파 레이더 센서 등 다양한 데이터 정보 센서가 장착되어 다양한 방식으로 정보를 수집하여 정확한 인식 작업을 수행합니다. 순수 비전을 기반으로 한 BEV 인식 알고리즘은 하드웨어 비용이 저렴하고 배포가 용이하며, 출력 결과를 다양한 다운스트림 작업에 쉽게 적용할 수 있어 업계에서 선호됩니다.

C++의 기계 학습 알고리즘이 직면하는 일반적인 과제에는 메모리 관리, 멀티스레딩, 성능 최적화 및 유지 관리 가능성이 포함됩니다. 솔루션에는 스마트 포인터, 최신 스레딩 라이브러리, SIMD 지침 및 타사 라이브러리 사용은 물론 코딩 스타일 지침 준수 및 자동화 도구 사용이 포함됩니다. 실제 사례에서는 Eigen 라이브러리를 사용하여 선형 회귀 알고리즘을 구현하고 메모리를 효과적으로 관리하며 고성능 행렬 연산을 사용하는 방법을 보여줍니다.

C++정렬 함수의 맨 아래 계층은 병합 정렬을 사용하고 복잡도는 O(nlogn)이며 빠른 정렬, 힙 정렬 및 안정 정렬을 포함한 다양한 정렬 알고리즘 선택을 제공합니다.

인공지능(AI)과 법 집행의 융합은 범죄 예방 및 탐지의 새로운 가능성을 열어줍니다. 인공지능의 예측 기능은 범죄 행위를 예측하기 위해 CrimeGPT(범죄 예측 기술)와 같은 시스템에서 널리 사용됩니다. 이 기사에서는 범죄 예측에서 인공 지능의 잠재력, 현재 응용 프로그램, 직면한 과제 및 기술의 가능한 윤리적 영향을 탐구합니다. 인공 지능 및 범죄 예측: 기본 CrimeGPT는 기계 학습 알고리즘을 사용하여 대규모 데이터 세트를 분석하고 범죄가 발생할 가능성이 있는 장소와 시기를 예측할 수 있는 패턴을 식별합니다. 이러한 데이터 세트에는 과거 범죄 통계, 인구 통계 정보, 경제 지표, 날씨 패턴 등이 포함됩니다. 인간 분석가가 놓칠 수 있는 추세를 식별함으로써 인공 지능은 법 집행 기관에 권한을 부여할 수 있습니다.

01 전망 요약 현재로서는 탐지 효율성과 탐지 결과 간의 적절한 균형을 이루기가 어렵습니다. 우리는 광학 원격 탐사 이미지에서 표적 감지 네트워크의 효과를 향상시키기 위해 다층 특징 피라미드, 다중 감지 헤드 전략 및 하이브리드 주의 모듈을 사용하여 고해상도 광학 원격 감지 이미지에서 표적 감지를 위한 향상된 YOLOv5 알고리즘을 개발했습니다. SIMD 데이터 세트에 따르면 새로운 알고리즘의 mAP는 YOLOv5보다 2.2%, YOLOX보다 8.48% 우수하여 탐지 결과와 속도 간의 균형이 더 잘 이루어졌습니다. 02 배경 및 동기 원격탐사 기술의 급속한 발전으로 항공기, 자동차, 건물 등 지구 표면의 많은 물체를 묘사하기 위해 고해상도 광학 원격탐사 영상이 활용되고 있다. 원격탐사 이미지 해석에서 물체 감지

JavaScript 튜토리얼: HTTP 상태 코드를 얻는 방법, 특정 코드 예제가 필요합니다. 서문: 웹 개발에서는 서버와의 데이터 상호 작용이 종종 포함됩니다. 서버와 통신할 때 반환된 HTTP 상태 코드를 가져와서 작업의 성공 여부를 확인하고 다양한 상태 코드에 따라 해당 처리를 수행해야 하는 경우가 많습니다. 이 기사에서는 JavaScript를 사용하여 HTTP 상태 코드를 얻는 방법과 몇 가지 실용적인 코드 예제를 제공합니다. XMLHttpRequest 사용

1. 58초상화 플랫폼 구축 배경 먼저, 58초상화 플랫폼 구축 배경에 대해 말씀드리겠습니다. 1. 기존 프로파일링 플랫폼의 전통적인 사고로는 더 이상 충분하지 않습니다. 사용자 프로파일링 플랫폼을 구축하려면 여러 비즈니스 라인의 데이터를 통합하여 정확한 사용자 초상화를 구축하는 데이터 웨어하우스 모델링 기능이 필요합니다. 그리고 알고리즘 측면의 기능을 제공해야 하며, 마지막으로 사용자 프로필 데이터를 효율적으로 저장, 쿼리 및 공유하고 프로필 서비스를 제공할 수 있는 데이터 플랫폼 기능도 있어야 합니다. 자체 구축한 비즈니스 프로파일링 플랫폼과 중간 사무실 프로파일링 플랫폼의 주요 차이점은 자체 구축한 프로파일링 플랫폼이 단일 비즈니스 라인에 서비스를 제공하고 필요에 따라 사용자 정의할 수 있다는 것입니다. 모델링하고 보다 일반적인 기능을 제공합니다. 2.58 Zhongtai 초상화 구성 배경의 사용자 초상화

JavaScript에서 HTTP 상태 코드를 얻는 방법 소개: 프런트 엔드 개발에서 우리는 종종 백엔드 인터페이스와의 상호 작용을 처리해야 하며 HTTP 상태 코드는 매우 중요한 부분입니다. HTTP 상태 코드를 이해하고 얻는 것은 인터페이스에서 반환된 데이터를 더 잘 처리하는 데 도움이 됩니다. 이 기사에서는 JavaScript를 사용하여 HTTP 상태 코드를 얻는 방법을 소개하고 구체적인 코드 예제를 제공합니다. 1. HTTP 상태 코드란 무엇입니까? HTTP 상태 코드는 브라우저가 서버에 요청을 시작할 때 서비스가
