SQL 최적화: SQL 성능을 향상시키는 매우 간단한 기사입니다!
SQL 쿼리에서 쿼리 효율성을 높이기 위해 쿼리문을 최적화하기 위한 몇 가지 조치를 취하는 경우가 많습니다. 필요한 경우 아래에 요약된 방법 중 일부를 참조할 수 있습니다. 어느 운영자의 최적화 경험에서 비교적 흥미로운 SQL을 접한 적이 있는데, 내용은 다음과 같습니다.
1 초기 SQL의 실행은 다음과 같습니다.
SQL> SELECT 2 NVL(T.RELA_OFFER_SPEC_ID, SUBOS.SUB_OFFER_SPEC_ID) "offerSpecId" 3 FROM OFFER_SPEC_RELA T 4 LEFT JOIN OFFER_SPEC_GRP_RELA SUBOS 5 ON T.RELA_GRP_ID = SUBOS.OFFER_SPEC_GRP_ID 6 AND subos.start_dt <= SYSDATE 7 AND subos.end_dt >= SYSDATE 8 WHERE T.RELA_TYPE_CD = 2 9 AND t.start_dt <= SYSDATE 10 AND t.end_dt >= SYSDATE 11 AND (T.OFFER_SPEC_ID = 109910000618 12 OR EXISTS 13 (SELECT A.OFFER_SPEC_GRP_ID 14 FROM OFFER_SPEC_GRP_RELA A 15 WHERE A.SUB_OFFER_SPEC_ID = 109910000618 16 AND T.OFFER_SPEC_GRP_ID = A.OFFER_SPEC_GRP_ID 17 )) 18 AND rownum<500; no rows selected Execution Plan ---------------------------------------------------------- Plan hash value: 1350156609
Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter(ROWNUM<500) 2 - filter("T"."OFFER_SPEC_ID"=109910000618 OR EXISTS (SELECT 0 FROM "SPEC"."OFFER_SPEC_GRP_RELA" "A" WHERE "A"."OFFER_SPEC_GRP_ID"=:B1 AND "A"."SUB_OFFER_SPEC_ID"=109910000618)) 3 - access("T"."RELA_GRP_ID"="SUBOS"."OFFER_SPEC_GRP_ID"(+)) 4 - filter("T"."RELA_TYPE_CD"=2 AND "T"."END_DT">=SYSDATE@! AND "T"."START_DT"<=SYSDATE@!) 5 - filter("SUBOS"."END_DT"(+)>=SYSDATE@! AND "SUBOS"."START_DT"(+)<=SYSDATE@!) 6 - access("A"."SUB_OFFER_SPEC_ID"=109910000618 AND "A"."OFFER_SPEC_GRP_ID"=:B1) Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 12444 consistent gets 0 physical reads 0 redo size 339 bytes sent via SQL*Net to client 509 bytes received via SQL*Net from client 1 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 0 rows processed PLAN GET DISK WRITE ROWS ROWS USER_IO(MS) ELA(MS) CPU(MS) CLUSTER(MS) PLSQL END_TI I HASH VALUE EXEC PRE EXEC PRE EXEC PER EXEC ROW_P PRE EXEC PRE FETCH PER EXEC PRE EXEC PRE EXEC PER EXEC PER EXEC
2 첫 번째 분석
이때 주의해야 할 점은 다음과 같습니다
1) 이 SQL은 하루에 수천 번 실행되며, 각 실행마다 평균적으로 10행 미만의 데이터가 반환되지만, 평균 논리적 읽기는 1.2W에 달합니다. 성능 문제.
2) 실행 계획 경로에는 ID 4와 5의 전체 테이블 스캔이 두 개 있습니다. 이를 보면 적절한 인덱스가 없어 전체 테이블 스캔이 발생하고 실행 효율성이 낮을 수 있다고 생각할 수 있습니다.
3) FILTER는 ID 2의 실행 계획 경로에 나타나며, 3, 6은 하위 경로입니다. FILTER에 두 개 이상의 하위 경로가 있는 경우 실행 원리는 중첩 루프, id와 유사합니다. ID 번호가 가장 작은 하위 경로가 많은 행을 반환하면 ID 번호가 더 작은 하위 경로가 여러 번 실행되어 성능이 저하될 수 있습니다. 이러한 상황은 일반적으로 "OR EXISTS"가 존재할 때 발생하며 상황에 따라 피할 수 있습니다.
관련 링크:
성능 최적화를 위한 PHP-FPM, php-fpm 성능 최적화
위 내용은 SQL 최적화: SQL 성능을 향상시키는 매우 간단한 기사입니다!의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











이 기사는 MySQL의 Alter Table 문을 사용하여 열 추가/드롭 테이블/열 변경 및 열 데이터 유형 변경을 포함하여 테이블을 수정하는 것에 대해 설명합니다.

기사는 인증서 생성 및 확인을 포함하여 MySQL에 대한 SSL/TLS 암호화 구성에 대해 설명합니다. 주요 문제는 자체 서명 인증서의 보안 영향을 사용하는 것입니다. [문자 수 : 159]

기사는 MySQL Workbench 및 Phpmyadmin과 같은 인기있는 MySQL GUI 도구에 대해 논의하여 초보자 및 고급 사용자를위한 기능과 적합성을 비교합니다. [159 자].

기사는 MySQL에서 파티셔닝, 샤딩, 인덱싱 및 쿼리 최적화를 포함하여 대규모 데이터 세트를 처리하기위한 전략에 대해 설명합니다.

InnoDB의 전체 텍스트 검색 기능은 매우 강력하여 데이터베이스 쿼리 효율성과 대량의 텍스트 데이터를 처리 할 수있는 능력을 크게 향상시킬 수 있습니다. 1) InnoDB는 기본 및 고급 검색 쿼리를 지원하는 역 색인화를 통해 전체 텍스트 검색을 구현합니다. 2) 매치 및 키워드를 사용하여 검색, 부울 모드 및 문구 검색을 지원합니다. 3) 최적화 방법에는 워드 세분화 기술 사용, 인덱스의 주기적 재건 및 캐시 크기 조정, 성능과 정확도를 향상시키는 것이 포함됩니다.

이 기사에서는 Drop Table 문을 사용하여 MySQL에서 테이블을 떨어 뜨리는 것에 대해 설명하여 예방 조치와 위험을 강조합니다. 백업 없이는 행동이 돌이킬 수 없으며 복구 방법 및 잠재적 생산 환경 위험을 상세하게합니다.

기사는 외국 열쇠를 사용하여 데이터베이스의 관계를 나타내고 모범 사례, 데이터 무결성 및 피할 수있는 일반적인 함정에 중점을 둡니다.

이 기사에서는 PostgreSQL, MySQL 및 MongoDB와 같은 다양한 데이터베이스에서 JSON 열에서 인덱스를 작성하여 쿼리 성능을 향상시킵니다. 특정 JSON 경로를 인덱싱하는 구문 및 이점을 설명하고 지원되는 데이터베이스 시스템을 나열합니다.
