Python 분산 프로세스란 무엇입니까? (예시분석)
이 글에서는 파이썬 분산 프로세스가 무엇인지 살펴보겠습니다. Python 분산 프로세스와 Python 프로그래밍에서 분산 프로세스가 수행할 수 있는 역할에 대해 알아보세요.
스레드와 프로세스 중에서는 프로세스가 더 안정적이고 프로세스를 여러 머신에 배포할 수 있는 반면 스레드는 최대 동일한 머신의 여러 CPU에만 배포할 수 있으므로 프로세스를 선호해야 합니다.
Python의 다중 처리 모듈은 여러 프로세스를 지원할 뿐만 아니라 관리자 하위 모듈도 여러 프로세스를 여러 컴퓨터에 배포하는 것을 지원합니다. 서비스 프로세스는 네트워크 통신에 의존하여 작업을 여러 다른 프로세스에 배포하는 스케줄러 역할을 할 수 있습니다. 관리자 모듈은 잘 캡슐화되어 있으므로 네트워크 통신의 세부 사항을 몰라도 분산 다중 프로세스 프로그램을 쉽게 작성할 수 있습니다.
예: 동일한 시스템에서 실행되는 대기열을 통해 통신하는 다중 프로세스 프로그램이 이미 있는 경우 작업을 처리하는 프로세스의 작업량이 많아 작업을 보내는 프로세스와 머신의 두 머신에 작업을 처리하는 프로세스입니다. 분산 프로세스를 사용하여 구현하는 방법은 무엇입니까?
원래 대기열을 계속 사용할 수 있지만 관리자 모듈을 통해 네트워크를 통해 대기열을 노출하면 다른 컴퓨터의 프로세스가 대기열에 액세스할 수 있습니다.
먼저 서비스 프로세스를 살펴보겠습니다. 서비스 프로세스는 대기열을 시작하고 네트워크에 대기열을 등록한 다음 대기열에 작업을 쓰는 일을 담당합니다.
# task_master.py import random, time, queue from multiprocessing.managers import BaseManager # 发送任务的队列: task_queue = queue.Queue() # 接收结果的队列: result_queue = queue.Queue() # 从BaseManager继承的QueueManager: class QueueManager(BaseManager): pass # 把两个Queue都注册到网络上, callable参数关联了Queue对象: QueueManager.register('get_task_queue', callable=lambda: task_queue) QueueManager.register('get_result_queue', callable=lambda: result_queue) # 绑定端口5000, 设置验证码'abc': manager = QueueManager(address=('', 5000), authkey=b'abc') # 启动Queue: manager.start() # 获得通过网络访问的Queue对象: task = manager.get_task_queue() result = manager.get_result_queue() # 放几个任务进去: for i in range(10): n = random.randint(0, 10000) print('Put task %d...' % n) task.put(n) # 从result队列读取结果: print('Try get results...') for i in range(10): r = result.get(timeout=10) print('Result: %s' % r) # 关闭: manager.shutdown()
다중 프로세스 프로그램을 작성할 때 주의하세요. 머신에서는 생성된 대기열을 직접 사용할 수 있습니다. 그러나 분산 다중 프로세스 환경에서는 대기열에 작업을 추가하는 것이 원래 task_queue에서 직접 작동할 수 없습니다. 이는 QueueManager의 캡슐화를 우회하고 Manager.get_task_queue()를 통해 대기열을 얻어야 합니다. . 인터페이스가 추가되었습니다.
그런 다음 다른 머신에서 작업 프로세스를 시작합니다(이 머신에서도 시작할 수 있음):
# task_master.py import random, time, queue from multiprocessing.managers import BaseManager # 发送任务的队列: task_queue = queue.Queue() # 接收结果的队列: result_queue = queue.Queue() # 从BaseManager继承的QueueManager: class QueueManager(BaseManager): pass # 把两个Queue都注册到网络上, callable参数关联了Queue对象: QueueManager.register('get_task_queue', callable=lambda: task_queue) QueueManager.register('get_result_queue', callable=lambda: result_queue) # 绑定端口5000, 设置验证码'abc': manager = QueueManager(address=('', 5000), authkey=b'abc') # 启动Queue: manager.start() # 获得通过网络访问的Queue对象: task = manager.get_task_queue() result = manager.get_result_queue() # 放几个任务进去: for i in range(10): n = random.randint(0, 10000) print('Put task %d...' % n) task.put(n) # 从result队列读取结果: print('Try get results...') for i in range(10): r = result.get(timeout=10) print('Result: %s' % r) # 关闭: manager.shutdown()
작업 프로세스는 네트워크를 통해 서비스 프로세스에 연결되어야 하므로 서비스 프로세스의 IP를 지정해야 합니다.
이제 분산 프로세스의 작업 효과를 시험해 볼 수 있습니다. 먼저 task_master.py 서비스 프로세스를 시작합니다.
$ python3 task_master.py Put task 3411... Put task 1605... Put task 1398... Put task 4729... Put task 5300... Put task 7471... Put task 68... Put task 4219... Put task 339... Put task 7866... Try get results...
task_master.py 프로세스가 작업을 보낸 후 결과 대기열의 결과를 기다리기 시작합니다. 이제 task_worker.py 프로세스를 시작합니다.
$ python3 task_worker.pyConnect to server 127.0.0.1... run task 3411 * 3411... run task 1605 * 1605... run task 1398 * 1398... run task 4729 * 4729... run task 5300 * 5300... run task 7471 * 7471... run task 68 * 68... run task 4219 * 4219... run task 339 * 339... run task 7866 * 7866... worker exit.
task_worker.py 프로세스가 종료되고 결과는 task_master.py 프로세스에서 계속 인쇄됩니다.
Result: 3411 * 3411 = 11634921 Result: 1605 * 1605 = 2576025 Result: 1398 * 1398 = 1954404 Result: 4729 * 4729 = 22363441 Result: 5300 * 5300 = 28090000 Result: 7471 * 7471 = 55815841 Result: 68 * 68 = 4624 Result: 4219 * 4219 = 17799961 Result: 339 * 339 = 114921 Result: 7866 * 7866 = 61873956
이 간단한 마스터/작업자 모델의 용도는 무엇입니까? 실제로 이것은 간단하지만 실제적인 분산 컴퓨팅입니다. 코드를 약간 수정하고 여러 작업자를 시작하면 작업을 여러 대 또는 심지어 수십 대의 컴퓨터에 분산시킬 수 있습니다. 이메일, 메일 대기열의 비동기 전송을 실현합니다.
네트워크를 통해 Queue에 접근할 수 있는 이유는 QueueManager를 통해서입니다. QueueManager는 둘 이상의 대기열을 관리하므로 각 대기열의 네트워크 호출 인터페이스에 get_task_queue와 같은 이름을 지정해야 합니다.
인증키의 용도는 무엇인가요? 이는 두 시스템이 정상적으로 통신하고 다른 시스템에 의해 악의적으로 간섭되지 않도록 하기 위한 것입니다. task_worker.py의 인증 키가 task_master.py의 인증 키와 일치하지 않으면 연결이 확실히 실패합니다.
Python의 분산 프로세스 인터페이스는 간단하고 잘 캡슐화되어 있어 무거운 작업을 여러 컴퓨터에 분산해야 하는 환경에 적합합니다.
큐의 역할은 작업을 전달하고 결과를 받는 것입니다. 각 작업을 설명하는 데이터의 양은 가능한 한 작아야 합니다. 예를 들어, 로그 파일을 처리하기 위한 작업을 보낼 때 수백 메가바이트 크기의 로그 파일 자체를 보내는 대신 로그 파일이 저장된 전체 경로를 보내면 작업자 프로세스가 해당 파일을 읽습니다. 공유 디스크.
위 내용은 이 글에 설명된 모든 내용입니다. 이 글은 주로 파이썬 배포 프로세스 관련 지식을 소개하는 내용입니다. 위 내용을 이해하는 데 참고하시기 바랍니다. 이 글에서 제가 설명한 내용이 여러분에게 도움이 되고 파이썬을 더 쉽게 배울 수 있기를 바랍니다.
더 많은 관련 지식을 알고 싶으시면 PHP 중국어 홈페이지의 Python tutorial 칼럼을 방문해 주세요.
위 내용은 Python 분산 프로세스란 무엇입니까? (예시분석)의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











PHP와 Python은 고유 한 장점과 단점이 있으며 선택은 프로젝트 요구와 개인 선호도에 달려 있습니다. 1.PHP는 대규모 웹 애플리케이션의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 데이터 과학 및 기계 학습 분야를 지배합니다.

Python과 JavaScript는 커뮤니티, 라이브러리 및 리소스 측면에서 고유 한 장점과 단점이 있습니다. 1) Python 커뮤니티는 친절하고 초보자에게 적합하지만 프론트 엔드 개발 리소스는 JavaScript만큼 풍부하지 않습니다. 2) Python은 데이터 과학 및 기계 학습 라이브러리에서 강력하며 JavaScript는 프론트 엔드 개발 라이브러리 및 프레임 워크에서 더 좋습니다. 3) 둘 다 풍부한 학습 리소스를 가지고 있지만 Python은 공식 문서로 시작하는 데 적합하지만 JavaScript는 MDNWebDocs에서 더 좋습니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Docker는 Linux 커널 기능을 사용하여 효율적이고 고립 된 응용 프로그램 실행 환경을 제공합니다. 작동 원리는 다음과 같습니다. 1. 거울은 읽기 전용 템플릿으로 사용되며, 여기에는 응용 프로그램을 실행하는 데 필요한 모든 것을 포함합니다. 2. Union 파일 시스템 (Unionfs)은 여러 파일 시스템을 스택하고 차이점 만 저장하고 공간을 절약하고 속도를 높입니다. 3. 데몬은 거울과 컨테이너를 관리하고 클라이언트는 상호 작용을 위해 사용합니다. 4. 네임 스페이스 및 CGroup은 컨테이너 격리 및 자원 제한을 구현합니다. 5. 다중 네트워크 모드는 컨테이너 상호 연결을 지원합니다. 이러한 핵심 개념을 이해 함으로써만 Docker를 더 잘 활용할 수 있습니다.

VS 코드는 파이썬을 작성하는 데 사용될 수 있으며 파이썬 애플리케이션을 개발하기에 이상적인 도구가되는 많은 기능을 제공합니다. 사용자는 다음을 수행 할 수 있습니다. Python 확장 기능을 설치하여 코드 완료, 구문 강조 및 디버깅과 같은 기능을 얻습니다. 디버거를 사용하여 코드를 단계별로 추적하고 오류를 찾아 수정하십시오. 버전 제어를 위해 git을 통합합니다. 코드 서식 도구를 사용하여 코드 일관성을 유지하십시오. 라인 도구를 사용하여 잠재적 인 문제를 미리 발견하십시오.

vs 코드에서는 다음 단계를 통해 터미널에서 프로그램을 실행할 수 있습니다. 코드를 준비하고 통합 터미널을 열어 코드 디렉토리가 터미널 작업 디렉토리와 일치하는지 확인하십시오. 프로그래밍 언어 (예 : Python의 Python Your_file_name.py)에 따라 실행 명령을 선택하여 성공적으로 실행되는지 여부를 확인하고 오류를 해결하십시오. 디버거를 사용하여 디버깅 효율을 향상시킵니다.

VS 코드는 Windows 8에서 실행될 수 있지만 경험은 크지 않을 수 있습니다. 먼저 시스템이 최신 패치로 업데이트되었는지 확인한 다음 시스템 아키텍처와 일치하는 VS 코드 설치 패키지를 다운로드하여 프롬프트대로 설치하십시오. 설치 후 일부 확장은 Windows 8과 호환되지 않을 수 있으며 대체 확장을 찾거나 가상 시스템에서 새로운 Windows 시스템을 사용해야합니다. 필요한 연장을 설치하여 제대로 작동하는지 확인하십시오. Windows 8에서는 VS 코드가 가능하지만 더 나은 개발 경험과 보안을 위해 새로운 Windows 시스템으로 업그레이드하는 것이 좋습니다.

VS 코드 확장은 악의적 인 코드 숨기기, 취약성 악용 및 합법적 인 확장으로 자위하는 등 악성 위험을 초래합니다. 악의적 인 확장을 식별하는 방법에는 게시자 확인, 주석 읽기, 코드 확인 및주의해서 설치가 포함됩니다. 보안 조치에는 보안 인식, 좋은 습관, 정기적 인 업데이트 및 바이러스 백신 소프트웨어도 포함됩니다.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.
