목차
f_localsplus 存 和 取
백엔드 개발 파이썬 튜토리얼 Python 함수 지역 변수는 어떻게 실행되나요? Python 함수 변수 적용에 대한 간략한 분석

Python 함수 지역 변수는 어떻게 실행되나요? Python 함수 변수 적용에 대한 간략한 분석

Sep 03, 2018 pm 05:33 PM
python 변하기 쉬운

이 기사에서 제공하는 내용은 Python 함수의 로컬 변수를 실행하는 방법입니다. Python 함수 변수의 응용에 대한 간략한 분석은 특정 참고 가치가 있습니다. 도움이 필요한 친구가 참고할 수 있기를 바랍니다.

머리말

이틀간 CodeReview에 있을 때 이런 코드를 봤습니다

# 伪代码
import somelib
class A(object):
    def load_project(self):
        self.project_code_to_name = {}
        for project in somelib.get_all_projects():
            self.project_code_to_name[project] = project
        ...
로그인 후 복사

의도는 매우 간단합니다. 즉, somelib.get_all_projects에서 얻은 프로젝트를 self.project_code_to_name somelib.get_all_projects 获取的项目塞入的 self.project_code_to_name

然而印象中这个是有优化空间的,于是提出调整方案:

import somelib
class A(object):
    def load_project(self):
        project_code_to_name = {}
        for project in somelib.get_all_projects():
            project_code_to_name[project] = project
        self.project_code_to_name = project_code_to_name
        ...
로그인 후 복사

方案很简单,就是先定义局部变量 project_code_to_name,操作完,再赋值到self.project_code_to_name

在后面的测试,也确实发现这样是会好点,那么结果知道了,接下来肯定是想探索原因的!

局部变量

其实在网上很多地方,甚至很多书上都有讲过一个观点:访问局部变量速度要快很多,粗看好像好有道理,然后又看到下面贴了一大堆测试数据,虽然不知道是什么,但这是真的屌,记住再说,管他呢!

但是实际上这个观点还是有一定的局限性,并不是放诸四海皆准。所以先来理解下这句话吧,为什么大家都喜欢这样说。

先看段代码理解下什么是局部变量:

#coding: utf8
a = 1
def test(b):
    c = 'test'    
    print a   # 全局变量
    print b   # 局部变量
    print c   # 局部变量

test(3)
로그인 후 복사
# 输出
1
3
test
로그인 후 복사
简单来说,局部变量就是只作用于所在的函数域,超过作用域就被回收
로그인 후 복사

理解了什么是局部变量,就需要谈谈 Python 函数 和 局部变量 的爱恨情仇,因为如果不搞清楚这个,是很难感受到到底快在哪里;

为避免枯燥,以上述的代码来阐述吧,顺便附上 test 函数执行 的 dis 的解析:

# CALL_FUNCTION

  5           0 LOAD_CONST               1 ('test')
              3 STORE_FAST               1 (c)

  6           6 LOAD_GLOBAL              0 (a)
              9 PRINT_ITEM
             10 PRINT_NEWLINE

  7          11 LOAD_FAST                0 (b)
             14 PRINT_ITEM
             15 PRINT_NEWLINE

  8          16 LOAD_FAST                1 (c)
             19 PRINT_ITEM
             20 PRINT_NEWLINE
             21 LOAD_CONST               0 (None)
             24 RETURN_VALUE
로그인 후 복사

在上图中比较清楚能看到 a、b、c 分别对应的指令块,每一块的第一行都是 LOAD_XXX,顾名思义,是说明这些变量是从哪个地方获取的。

LOAD_GLOBAL 毫无疑问是全局,但是 LOAD_FAST 是什么鬼?似乎应该叫LOAD_LOCAL 吧?

然而事实就是这么神奇,人家就真的是叫 LOAD_FAST,因为局部变量是从一个叫 fastlocals 的数组里面读,所以名字也就这样叫了(我猜的)。

那么主角来了,我们要重点理解这个,因为这个确实还挺有意思。

Python 函数执行

Python 函数的构建和运行,说复杂不复杂,说简单也不简单,因为它需要区分很多情况,比方说需要区分 函数 和 方法,再而区分是有无参数,有什么参数,有木有变长参数,有木有关键参数。

全部展开仔细讲是不可能的啦,不过可以简单图解下大致的流程(忽略参数变化细节):

Python 함수 지역 변수는 어떻게 실행되나요? Python 함수 변수 적용에 대한 간략한 분석

一路顺流而下,直达 fast_function,它在这里的调用是:

// ceval.c -> call_function

x = fast_function(func, pp_stack, n, na, nk);
로그인 후 복사

参数解释下:

  1. func: 传入的 test;

  2. pp_stack: 近似理解调用栈 (py方式);

  3. na: 位置参数个数;

  4. nk: 关键字个数;

  5. n = na + 2 * nk;

那么下一步就看看 fast_function 要做什么吧。

初始化一波

  1. 定义 co 来存放 test 对象里面的 func_code

  2. 定义 globals 来存放 test 对象里面的 func_globals (字典)

  3. 定义 argdefs 来存放 test 对象里面的 func_defaults (构建函数时的关键字参数默认值)

来个判断,如果 argdefs 为空 && 传入的位置参数个数 == 函数定义时候的位置形参个数  && 没有传入关键字参数

那就

  1. 当前线程状态coglobals 来新建栈对象 f;

  2. 定义fastlocals  ( fastlocals = f->f_localsplus; );

  3. 把 传入的参数全部塞进去 fastlocals

那么问题来了,怎么塞?怎么找到传入了什么鬼参数:这个问题还是只能有 dis 来解答:

我们知道现在这步是在 CALL_FUNCTION 里面进行的,所以塞参数的动作,肯定是在此之前的,所以:

 12          27 LOAD_NAME                2 (test)
             30 LOAD_CONST               4 (3)
             33 CALL_FUNCTION            1
             36 POP_TOP
             37 LOAD_CONST               1 (None)
             40 RETURN_VALUE
로그인 후 복사

CALL_FUNCTION 上面就看到 30 LOAD_CONST               4 (3),有兴趣的童鞋可以试下多传几个参数,就会发现传入的参数,是依次通过LOAD_CONST

그러나 최적화의 여지가 있다는 인상을 받았기 때문에 조정 계획을 제안했습니다: 🎜
// fast_function 函数

fastlocals = f->f_localsplus;
stack = (*pp_stack) - n;

 for (i = 0; i 🎜계획은 매우 간단합니다. 즉, 먼저 로컬 변수 <code>project_code_to_name</code>을 선택한 다음 <code>self.project_code_to_name</code>에 값을 할당합니다. 🎜🎜후속 테스트에서 이것이 더 낫다는 것을 알았습니다. 이제 결과가 알려졌으니 다음에는 그 이유를 꼭 살펴보고 싶습니다! 🎜🎜🎜로컬 변수🎜🎜🎜사실 인터넷의 여러 곳, 심지어 많은 책에서도 언급되는 관점이 있습니다. 🎜로컬 변수에 액세스하는 것이 훨씬 빠릅니다🎜 언뜻 보기에 말이 되는 것 같습니다. 그러다가 아래 글을 봤는데, 테스트 데이터가 많네요. 뭔지는 모르겠지만 정말 멋지네요. 걱정하지 마세요. 🎜🎜그러나 사실 이 견해에는 여전히 일정한 한계가 있으며 보편적으로 적용 가능하지는 않습니다. 그럼 먼저 이 문장을 이해하고 왜 모두가 이 문장을 좋아하는지 알아보겠습니다. 🎜🎜지역 변수가 무엇인지 이해하려면 먼저 코드를 살펴보세요. 🎜<pre class="brush:php;toolbar:false"># CALL_FUNCTION
  5           0 LOAD_CONST               1 ('test')
              3 STORE_FAST               1 (c)
로그인 후 복사
# PyEval_EvalFrameEx 庞大 switch-case 的其中一个分支:

        PREDICTED_WITH_ARG(STORE_FAST);
        TARGET(STORE_FAST)
        {
            v = POP();
            SETLOCAL(oparg, v);
            FAST_DISPATCH();
        }

# 因为有涉及到宏,就顺便给出:
#define GETLOCAL(i)     (fastlocals[i])
#define SETLOCAL(i, value)      do { PyObject *tmp = GETLOCAL(i); \
                                     GETLOCAL(i) = value; \
                                     Py_XDECREF(tmp); } while (0)
로그인 후 복사
로그인 후 복사
// 我感觉往回看的概率超低的,直接给出算了

def test(b):
    c = 'test'    
    print b   # 局部变量
    print c   # 局部变量
로그인 후 복사
로그인 후 복사
🎜지역 변수가 무엇인지 이해하려면 Python 함수와 지역 변수 사이의 애증에 대해 이야기해야 합니다. 🎜🎜심심하지 않게 위의 코드로 설명하자면, 🎜test🎜 함수로 실행되는 🎜dis🎜 분석은 🎜
22 LOAD_FAST                1 (c)
로그인 후 복사
로그인 후 복사
🎜 입니다. a, b, c는 명령 블록에 해당하는 것을 볼 수 있습니다. 각 블록의 첫 번째 줄은 이름에서 알 수 있듯이 이러한 변수를 가져온 위치를 나타냅니다. 🎜🎜LOAD_GLOBAL은 의심할 여지없이 전역적이지만 LOAD_FAST는 도대체 무엇인가요? LOAD_LOCAL로 불러야 할 것 같죠? 🎜🎜그러나 진실은 너무나 마술적이어서 실제로는 LOAD_FAST라고 불립니다. 지역 변수는 fastlocals라는 배열에서 읽혀지기 때문에 이름도 그렇게 불립니다( 추측합니다). 🎜🎜이제 주인공이 왔으니 이것을 이해하는데 집중해야 합니다. 왜냐하면 이것은 정말 흥미롭기 때문입니다. 🎜🎜🎜파이썬 함수 실행🎜🎜🎜파이썬 함수의 구성과 연산은 복잡하다고 할 수도 있고 간단하다고 할 수도 있습니다. 함수나 메소드 등 여러 가지 상황을 구분해야 하고, 매개변수가 있는지 없는지 구분해야 하기 때문입니다. 가변 길이 매개변수가 있나요? 주요 매개변수가 있나요? 🎜🎜모든 것을 자세히 설명하는 것은 불가능하지만 일반적인 프로세스를 간략하게 설명할 수 있습니다(매개변수 변경 세부 사항 무시): 🎜🎜Python 함수 지역 변수는 어떻게 실행되나요? Python 함수 변수 적용에 대한 간략한 분석🎜🎜강을 따라 쭉 내려가세요 fast_function에 대한 호출은 다음과 같습니다. 🎜
# PyEval_EvalFrameEx 庞大 switch-case 的其中一个分支:
TARGET(LOAD_FAST)
{
    x = GETLOCAL(oparg);
    if (x != NULL) {
        Py_INCREF(x);
        PUSH(x);
        FAST_DISPATCH();
    }
    format_exc_check_arg(PyExc_UnboundLocalError,
        UNBOUNDLOCAL_ERROR_MSG,
        PyTuple_GetItem(co->co_varnames, oparg));
    break;
}
로그인 후 복사
로그인 후 복사
🎜매개변수 설명: 🎜
  1. 🎜func: Incoming test ;🎜
  2. 🎜pp_stack: 호출 스택에 대한 대략적인 이해(py 모드);🎜
  3. 🎜na: 위치 매개변수 수;🎜
  4. 🎜nk: 키워드 수;🎜
  5. 🎜n = na + 2 * nk;🎜
🎜그런 다음 다음 단계는 fast_function이 Bar에서 수행해야 하는 작업을 확인하는 것입니다. . 🎜🎜wave 초기화🎜
  1. 🎜co를 정의하여 func_code를 테스트 개체에 저장합니다🎜
  2. 🎜전역 정의 테스트 개체에 func_globals(사전)를 저장하려면🎜
  3. 🎜인수 정의를 정의하여 func_defaults(함수 빌드 시 기본 키워드 매개변수)를 테스트에 저장하세요. object Value)🎜
🎜 argdefs가 비어 있는지 && 전달된 위치 매개변수 수 == 함수가 실행될 때 위치 매개변수 수 정의되었습니다 && 키워드 매개변수가 전달되지 않았습니다🎜🎜Then🎜
  1. 🎜현재 스레드 상태 사용, co, globals를 사용하여 새 스택 개체 f를 생성합니다.🎜
  2. 🎜 fastlocals 정의 code> ( fastlocals = f->f_localsplus; );🎜
  3. 🎜 fastlocals🎜
🎜에 전달된 모든 매개변수를 입력하세요. 그런 다음 질문 온다, 어떻게 연결하나요? 어떤 고스트 매개변수가 전달되었는지 확인하는 방법: 이 질문은 dis로만 답변할 수 있습니다. 🎜🎜우리는 이 단계가 CALL_FUNCTION에서 수행된다는 것을 알고 있으므로 매개변수는 다음과 같습니다. 연결됨 이 작업은 이 이전에 수행되어야 하므로: 🎜
class SS(object):
    def __init__(self):
        self.fuck = {}

    def test(self):
        print self.fuck
로그인 후 복사
로그인 후 복사
🎜 CALL_FUNCTION에서 30 LOAD_CONST를 볼 수 있습니다. 몇 가지 매개변수를 전달하면 전달된 매개변수가 순서대로 로드되는 것을 확인할 수 있습니다. <code>LOAD_CONST 를 통해 매개변수를 찾는 방법에 대한 문제가 분명해집니다.
// fast_function 函数

fastlocals = f->f_localsplus;
stack = (*pp_stack) - n;

 for (i = 0; i <p>这里出现的 n 还记得怎么来的吗?回顾上面有个 <code>n = na + 2 * nk;</code> ,能想起什么吗?</p><p>其实这个地方就是简单的通过将 <code>pp_stack</code> 偏移 n 字节 找到一开始塞入参数的位置。</p><p>那么问题来了,如果 n 是 位置参数个数 + 关键字参数,那么 2 * nk 是什么意思?其实这答案很简单,那就是 关键字参数字节码 是属于带参数字节码, 是占 2字节。</p><p>到了这里,栈对象 <code>f</code> 的 <code>f_localsplus</code> 也登上历史舞台了,只是此时的它,还只是一个未经人事的少年,还需历练。</p><p>做好这些动作,终于来到真正执行函数的地方了: <code>PyEval_EvalFrameEx</code>,在这里,需要先交代下,有个和 <code>PyEval_EvalFrameEx</code> 很像的,叫 <code>PyEval_EvalCodeEx</code>,虽然长得像,但是人家干得活更多了。</p><p>请看回前面的 <code>fast_function</code> 开始那会有个判断,我们上面说得是判断成立的,也就是最简单的函数执行情况。如果函数传入多了关键字参数或者其他情况,那就复杂很多了,此时就需要由 <code>PyEval_EvalCodeEx</code> 处理一波,再执行 <code>PyEval_EvalFrameEx</code>。</p><p><code>PyEval_EvalFrameEx</code>  主要的工作就是解析字节码,像刚才的那些 <code>CALL_FUNCTION</code>,<code>LOAD_FAST</code> 等等,都是由它解析和处理的,它的本质就是一个死循环,然后里面有一堆 <code>swith - case</code>,这基本也就是 Python 的运行本质了。</p><h4 id="f-localsplus-存-和-取">f_localsplus 存 和 取</h4><p>讲了这么长的一堆,算是把 Python 最基本的 函数调用过程简单扫了个盲,现在才开始探索主题。。</p><p>为了简单阐述,直接引用名词:<code>fastlocals</code>,  其中 <code>fastlocals = f->f_localsplus</code></p><p>刚才只是简单看到了,Python 会把传入的参数,以此塞入 <code>fastlocals</code> 里面去,那么毋庸置疑,传入的位置参数,必然属于局部变量了,那么关键字参数呢?那肯定也是局部变量,因为它们都被特殊对待了嘛。</p><p>那么除了函数参数之外,必然还有函数内部的赋值咯? 这块字节码也一早在上面给出了:</p><pre class="brush:php;toolbar:false"># CALL_FUNCTION
  5           0 LOAD_CONST               1 ('test')
              3 STORE_FAST               1 (c)
로그인 후 복사

这里出现了新的字节码 STORE_FAST,一起来看看实现把:

# PyEval_EvalFrameEx 庞大 switch-case 的其中一个分支:

        PREDICTED_WITH_ARG(STORE_FAST);
        TARGET(STORE_FAST)
        {
            v = POP();
            SETLOCAL(oparg, v);
            FAST_DISPATCH();
        }

# 因为有涉及到宏,就顺便给出:
#define GETLOCAL(i)     (fastlocals[i])
#define SETLOCAL(i, value)      do { PyObject *tmp = GETLOCAL(i); \
                                     GETLOCAL(i) = value; \
                                     Py_XDECREF(tmp); } while (0)
로그인 후 복사
로그인 후 복사

简单解释就是,将 POP() 获得的值 v,塞到 fastlocals 的  oparg 位置上。此处,v 是 "test", oparg 就是 1。用图表示就是:

Python 함수 지역 변수는 어떻게 실행되나요? Python 함수 변수 적용에 대한 간략한 분석

有童鞋可能会突然懵了,为什么突然来了个 b ?我们又需要回到上面看 test 函数是怎样定义的:

// 我感觉往回看的概率超低的,直接给出算了

def test(b):
    c = 'test'    
    print b   # 局部变量
    print c   # 局部变量
로그인 후 복사
로그인 후 복사

看到函数定义其实都应该知道了,因为 b 是传的参数啊,老早就塞进去了~

那存储知道了,那么怎么取呢?同样也是这段代码的字节码:

22 LOAD_FAST                1 (c)
로그인 후 복사
로그인 후 복사

虽然这个用脚趾头想想都知道原理是啥,但公平起见还是给出相应的代码:

# PyEval_EvalFrameEx 庞大 switch-case 的其中一个分支:
TARGET(LOAD_FAST)
{
    x = GETLOCAL(oparg);
    if (x != NULL) {
        Py_INCREF(x);
        PUSH(x);
        FAST_DISPATCH();
    }
    format_exc_check_arg(PyExc_UnboundLocalError,
        UNBOUNDLOCAL_ERROR_MSG,
        PyTuple_GetItem(co->co_varnames, oparg));
    break;
}
로그인 후 복사
로그인 후 복사

直接用 GETLOCAL 通过索引在数组里取值了。

到了这里,应该也算是把 f_localsplus  讲明白了。这个地方不难,其实一般而言是不会被提及到这个,因为一般来说忽略即可了,但是如果说想在性能方面讲究点,那么这个小知识就不得忽视了。

变量使用姿势

因为是面向对象,所以我们都习惯了通过 class 的方式,对于下面的使用方式,也是随手就来:

class SS(object):
    def __init__(self):
        self.fuck = {}

    def test(self):
        print self.fuck
로그인 후 복사
로그인 후 복사

这种方式一般是没什么问题的,也很规范。到那时如果是下面的操作,那就有问题了:

class SS(object):
    def __init__(self):
        self.fuck = {}

    def test(self):
        num = 10
        for i in range(num):
            self.fuck[i] = i
로그인 후 복사

这段代码的性能损耗,会随着 num 的值增大而增大, 如果下面循环中还要涉及到更多类属性的读取、修改等等,那影响就更大了

这个类属性如果换成 全局变量,也会存在类似的问题,只是说在操作类属性会比操作全局变量要频繁得多。

我们直接看看两者的差距有多大把?

import timeit
class SS(object):
    def test(self):
        num = 100
        self.fuck = {}        # 为了公平,每次执行都同样初始化新的 {}
        for i in range(num):
            self.fuck[i] = i

    def test_local(self):
        num = 100
        fuck = {}             # 为了公平,每次执行都同样初始化新的 {}
        for i in range(num):
            fuck[i] = i
        self.fuck = fuck

s = SS()
print timeit.timeit(stmt=s.test_local)
print timeit.timeit(stmt=s.test)
로그인 후 복사

Python 함수 지역 변수는 어떻게 실행되나요? Python 함수 변수 적용에 대한 간략한 분석

通过上图可以看出,随着 num 的值越大,for 循环的次数就越多,那么两者的差距也就越大了。

那么为什么会这样,也是在字节码可以看出写端倪:

// s.test
        >>   28 FOR_ITER                19 (to 50)
             31 STORE_FAST               2 (i)

  8          34 LOAD_FAST                2 (i)
             37 LOAD_FAST                0 (self)
             40 LOAD_ATTR                0 (hehe)
             43 LOAD_FAST                2 (i)
             46 STORE_SUBSCR
             47 JUMP_ABSOLUTE           28
        >>   50 POP_BLOCK

// s.test_local
        >>   25 FOR_ITER                16 (to 44)
             28 STORE_FAST               3 (i)

 14          31 LOAD_FAST                3 (i)
             34 LOAD_FAST                2 (hehe)
             37 LOAD_FAST                3 (i)
             40 STORE_SUBSCR
             41 JUMP_ABSOLUTE           25
        >>   44 POP_BLOCK

 15     >>   45 LOAD_FAST                2 (hehe)
             48 LOAD_FAST                0 (self)
             51 STORE_ATTR               1 (hehe)
로그인 후 복사

上面两段就是两个方法的 for block 内容,大家对比下就会知道,  s.test 相比于 s.test_local,  多了个 LOAD_ATTR 放在 FOR_ITERPOP_BLOCK 之间。

这说明什么呢? 这说明,在每次循环时,s.test 都需要 LOAD_ATTR,很自然的,我们需要看看这个是干什么的:

TARGET(LOAD_ATTR)
{
     w = GETITEM(names, oparg);
     v = TOP();
     x = PyObject_GetAttr(v, w);
     Py_DECREF(v);
     SET_TOP(x);
     if (x != NULL) DISPATCH();
     break;
 }

# 相关宏定义
#define GETITEM(v, i) PyTuple_GetItem((v), (i))
로그인 후 복사

这里出现了一个陌生的变量 name, 这是什么?其实这个就是每个 codeobject 所维护的一个 名字数组,基本上每个块所使用到的字符串,都会在这里面存着,同样也是有序的:

// PyCodeObject 结构体成员
PyObject *co_names;        /* list of strings (names used) */
로그인 후 복사

那么 LOAD_ATTR 的任务就很清晰了:先从名字列表里面取出字符串,结果就是 "hehe", 然后通过 PyObject_GetAttr 去查找,在这里就是在 s 实例中去查找。

且不说查找效率如何,光多了这一步,都能失之毫厘差之千里了,当然这是在频繁操作次数比较多的情况下。

所以我们在一些会频繁操作 类/实例属性 的情况下,应该是先把 属性 取出来存到 局部变量,然后用 局部变量 来完成操作。最后视情况把变动更新到属性上。

最后

其实相比变量,在函数和方法的使用上面更有学问,更值得探索,因为那个原理和表面看起来差别更大,下次有机会再探讨。平时工作多注意下,才能使得我们的 PY 能够稍微快点点点点点。

相关推荐:

理解python的全局变量和局部变量

python函数局部变量用法实例分析

详解Python的局部变量和全局变量使用难点

위 내용은 Python 함수 지역 변수는 어떻게 실행되나요? Python 함수 변수 적용에 대한 간략한 분석의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

PHP와 Python : 다른 패러다임이 설명되었습니다 PHP와 Python : 다른 패러다임이 설명되었습니다 Apr 18, 2025 am 12:26 AM

PHP는 주로 절차 적 프로그래밍이지만 객체 지향 프로그래밍 (OOP)도 지원합니다. Python은 OOP, 기능 및 절차 프로그래밍을 포함한 다양한 패러다임을 지원합니다. PHP는 웹 개발에 적합하며 Python은 데이터 분석 및 기계 학습과 같은 다양한 응용 프로그램에 적합합니다.

PHP와 Python 중에서 선택 : 가이드 PHP와 Python 중에서 선택 : 가이드 Apr 18, 2025 am 12:24 AM

PHP는 웹 개발 및 빠른 프로토 타이핑에 적합하며 Python은 데이터 과학 및 기계 학습에 적합합니다. 1.PHP는 간단한 구문과 함께 동적 웹 개발에 사용되며 빠른 개발에 적합합니다. 2. Python은 간결한 구문을 가지고 있으며 여러 분야에 적합하며 강력한 라이브러리 생태계가 있습니다.

Python vs. JavaScript : 학습 곡선 및 사용 편의성 Python vs. JavaScript : 학습 곡선 및 사용 편의성 Apr 16, 2025 am 12:12 AM

Python은 부드러운 학습 곡선과 간결한 구문으로 초보자에게 더 적합합니다. JavaScript는 가파른 학습 곡선과 유연한 구문으로 프론트 엔드 개발에 적합합니다. 1. Python Syntax는 직관적이며 데이터 과학 및 백엔드 개발에 적합합니다. 2. JavaScript는 유연하며 프론트 엔드 및 서버 측 프로그래밍에서 널리 사용됩니다.

Python에서 비주얼 스튜디오 코드를 사용할 수 있습니다 Python에서 비주얼 스튜디오 코드를 사용할 수 있습니다 Apr 15, 2025 pm 08:18 PM

VS 코드는 파이썬을 작성하는 데 사용될 수 있으며 파이썬 애플리케이션을 개발하기에 이상적인 도구가되는 많은 기능을 제공합니다. 사용자는 다음을 수행 할 수 있습니다. Python 확장 기능을 설치하여 코드 완료, 구문 강조 및 디버깅과 같은 기능을 얻습니다. 디버거를 사용하여 코드를 단계별로 추적하고 오류를 찾아 수정하십시오. 버전 제어를 위해 git을 통합합니다. 코드 서식 도구를 사용하여 코드 일관성을 유지하십시오. 라인 도구를 사용하여 잠재적 인 문제를 미리 발견하십시오.

Windows 8에서 코드를 실행할 수 있습니다 Windows 8에서 코드를 실행할 수 있습니다 Apr 15, 2025 pm 07:24 PM

VS 코드는 Windows 8에서 실행될 수 있지만 경험은 크지 않을 수 있습니다. 먼저 시스템이 최신 패치로 업데이트되었는지 확인한 다음 시스템 아키텍처와 일치하는 VS 코드 설치 패키지를 다운로드하여 프롬프트대로 설치하십시오. 설치 후 일부 확장은 Windows 8과 호환되지 않을 수 있으며 대체 확장을 찾거나 가상 시스템에서 새로운 Windows 시스템을 사용해야합니다. 필요한 연장을 설치하여 제대로 작동하는지 확인하십시오. Windows 8에서는 VS 코드가 가능하지만 더 나은 개발 경험과 보안을 위해 새로운 Windows 시스템으로 업그레이드하는 것이 좋습니다.

PHP와 Python : 그들의 역사에 깊은 다이빙 PHP와 Python : 그들의 역사에 깊은 다이빙 Apr 18, 2025 am 12:25 AM

PHP는 1994 년에 시작되었으며 Rasmuslerdorf에 의해 개발되었습니다. 원래 웹 사이트 방문자를 추적하는 데 사용되었으며 점차 서버 측 스크립팅 언어로 진화했으며 웹 개발에 널리 사용되었습니다. Python은 1980 년대 후반 Guidovan Rossum에 의해 개발되었으며 1991 년에 처음 출시되었습니다. 코드 가독성과 단순성을 강조하며 과학 컴퓨팅, 데이터 분석 및 기타 분야에 적합합니다.

터미널 VSCODE에서 프로그램을 실행하는 방법 터미널 VSCODE에서 프로그램을 실행하는 방법 Apr 15, 2025 pm 06:42 PM

vs 코드에서는 다음 단계를 통해 터미널에서 프로그램을 실행할 수 있습니다. 코드를 준비하고 통합 터미널을 열어 코드 디렉토리가 터미널 작업 디렉토리와 일치하는지 확인하십시오. 프로그래밍 언어 (예 : Python의 Python Your_file_name.py)에 따라 실행 명령을 선택하여 성공적으로 실행되는지 여부를 확인하고 오류를 해결하십시오. 디버거를 사용하여 디버깅 효율을 향상시킵니다.

VScode 확장자가 악의적입니까? VScode 확장자가 악의적입니까? Apr 15, 2025 pm 07:57 PM

VS 코드 확장은 악의적 인 코드 숨기기, 취약성 악용 및 합법적 인 확장으로 자위하는 등 악성 위험을 초래합니다. 악의적 인 확장을 식별하는 방법에는 게시자 확인, 주석 읽기, 코드 확인 및주의해서 설치가 포함됩니다. 보안 조치에는 보안 인식, 좋은 습관, 정기적 인 업데이트 및 바이러스 백신 소프트웨어도 포함됩니다.

See all articles