이 글은 JavaScript의 숫자에 대한 자세한 소개를 제공합니다. 도움이 필요한 친구들이 참고할 수 있기를 바랍니다.
면책 조항: 독자는 바이너리에 대해 어느 정도 이해해야 합니다.
JavaScript 개발자의 경우 JS 처리 숫자에서 다음과 같은 이상한 현상을 경험한 적이 있습니다.
> 0.1 + 0.2 0.30000000000000004 > 0.1 + 1 - 1 0.10000000000000009 > 0.1 * 0.2 0.020000000000000004 > Math.pow(2, 53) 9007199254740992 > Math.pow(2, 53) + 1 9007199254740992 > Math.pow(2, 53) + 3 9007199254740996
이유를 알고 싶다면 이러한 이상한 현상이 나타날 때 발생하는 경우 먼저 JavaScript가 숫자를 인코딩하는 방법을 파악해야 합니다.
1. JavaScript는 숫자를 어떻게 인코딩하나요?
JavaScript의 숫자는 정수, 소수, 분수, 양수, 음수 등 모두 부동 소수점 숫자이며 저장된 8바이트(64비트)를 사용하여 인코딩됩니다.
숫자(예: 12
, 0.12
, -999
)는 메모리에서 8바이트(64비트)를 차지하며 다음과 같이 저장됩니다. 12
、0.12
、-999
)在内存中占用 8 个字节(64 位),存储方式如下:
0 - 51
:分数部分(52 位)
52 - 62
:指数部分(11 位)
63
:符号位(1 位:0 表示这个数是正数,1 表示这个数是负数)
符号位很好理解,用于指明是正数还是负数,且只有 1 位、两种情况(0 表示正数,1 表示负数)。
其他两部分是分数部分和指数部分,用于计算一个数的绝对值。
1.1 绝对值计算公式
1: abs = 1.f * 2 ^ (e - 1023) 0 < e < 2047 2: abs = 0.f * 2 ^ (e - 1022) e = 0, f > 0 3: abs = 0 e = 0, f = 0 4: abs = NaN e = 2047, f > 0 5: abs = ∞ (infinity, 无穷大) e = 2047, f = 0
说明:
这个公式是二进制的算法公式,结果用 abs
表示,分数部分用 f
表示,指数部分用 e
表示
2 ^ (e - 1023)
表示 2
的 e - 1023
次方
因为分数部分占 52 位,所以 f
的取值范围为 00...00
(中间省略 48 个 0) 到 11...11
(中间省略 48 个 1)
因为指数部分占 11 位,所以 e
的取值范围为 0
(00000000000
) 到 2047
(11111111111
)
从上面的公式可以看出:
1
的存储方式:1.00 * 2 ^ (1023 - 1023)
(f = 0000..., e = 1023
,...
表示 48 个 0)
2
的存储方式:1.00 * 2 ^ (1024 - 1023)
(f = 0000..., e = 1024
,...
表示 48 个 0)
9
的存储方式:1.01 * 2 ^ (1025 - 1023)
(f = 0100..., e = 1025
,...
表示 48 个 0)
0.5
的存储方式:1.00 * 2 ^ (1022 - 1023)
(f = 0000..., e = 1022
,...
表示 48 个 0)
0.625
的存储方式:1.01 * 2 ^ (1021 - 1023)
(f = 0100..., e = 1021
,...
表示 48 个 0)
从上面的公式可以看出:
0 < e < 2047
当 0 < e < 2047
时,取值范围为:f = 0, e = 1
到 f = 11...11, e = 2046
(中间省略 48 个 1)
即:Math.pow(2, -1022)
到 ~= Math.pow(2, 1024) - 1
(~=
表示约等于)
这当中,~= Math.pow(2, 1024) - 1
就是 Number.MAX_VALUE
的值,js
所能表示的最大数值。
e = 0, f > 0
当 e = 0, f > 0
时,取值范围为:f = 00...01, e = 0
(中间省略 48 个 0) 到 f = 11...11, e = 0
(中间省略 48 个 1)
即:Math.pow(2, -1074)
到 ~= Math.pow(2, -1022)
(~=
表示约等于)
这当中,Math.pow(2, -1074)
就是 Number.MIN_VALUE
的值,js
所能表示的最小数值(绝对值)。
e = 0, f = 0
这只表示一个值 0
,但加上符号位,所以有 +0
与 -0
。
但在运算中:
> +0 === -0 true
e = 2047, f > 0
这只表示一种值 NaN
。
但在运算中:
> NaN == NaN false > NaN === NaN false
e = 2047, f = 0
这只表示一个值 ∞
(infinity, 无穷大)。
在运算中:
> Infinity === Infinity true > -Infinity === -Infinity true
从上面可以看出,8 个字节能存储的最大数值是 Number.MAX_VALUE
的值,也就是 ~= Math.pow(2, 1024) - 1
。
但这个数值并不安全:从 1
到 Number.MAX_VALUE
0 - 51
: 소수부(52비트) 🎜52 - 62 : 지수부(11비트) 🎜
63
: 부호 비트(1비트: 0은 숫자가 양수, 1은 음수를 의미) 🎜 > Math.pow(2, 53) 9007199254740992 > Math.pow(2, 53) + 1 9007199254740992 > Math.pow(2, 53) + 3 9007199254740996
abs , 분수 부분은 <code>f
로 표시되고 지수 부분은 e
🎜
2 ^ (e - 1023)
e - 1023
2
🎜00...00
(중간에 48개의 0이 생략됨)부터 11...11
(중간에 48개의 1이 생략됨)까지 ) 🎜e
의 값 범위는 0
(00000000000
)부터이기 때문입니다. )에서 2047
(11111111111
)🎜1
저장 방법: 1.00 * 2 ^ (1023 - 1023)
(f = 0000..., e = 1023
, ...
는 48개의 0을 의미합니다.)🎜2
는 1.00 * 2 ^ (1024 - 1023) (<code>f = 0000.. ., e = 1024
, ...
는 48개의 0을 의미함) 🎜
9 저장 방법: <code>1.01 * 2 ^ (1025 - 1023)
(f = 0100..., e = 1025
, ...
는 48개의 0을 나타냄)🎜
0.5
는 1.00 * 2 ^ (1022 - 1023)
에 저장됩니다(f = 0000. .., e = 1022
, ...
는 48개의 0을 나타냅니다.) 🎜0.625
는 1.01에 저장됩니다. * 2 ^ (1021 - 1023)
(f = 0100..., e = 1021
, ...
는 48개의 0을 의미합니다)🎜0 < code>
f = 0, e = 1
~ f = 11입니다. ...11, e = 2046< /code> (중간 48개의 1은 생략됨) 🎜🎜즉, <code>Math.pow(2, -1022)
에서 ~= Math. pow(2, 1024) - 1
(~=
는 대략 같음을 의미함) 🎜🎜그 중 ~= Math.pow(2, 1024) - 1</code >는 <code>Number.MAX_VALUE
값으로, js
가 나타낼 수 있는 최대값입니다. 🎜e = 0, f > 0
e = 0, f > 0
일 때 값 범위는 다음과 같습니다. code>f = 00...01, e = 0 (48개의 0이 생략됨) ~ f = 11...11, e = 0
(48개의 1이 생략됨) )🎜 🎜즉, Math.pow(2, -1074)
에서 ~= Math.pow(2, -1022)
로(~=
는 의미) 대략 같음)🎜🎜그 중 Math.pow(2, -1074)
는 Number.MIN_VALUE
의 값으로, js
에서 지정할 수 있습니다. 최소값(절대값)을 나타냅니다. 🎜e = 0, f = 0
0
값만 나타내지만 부호 비트가 추가되므로 다음과 같습니다. +0
및 -0
. 🎜🎜그러나 연산에서는: 🎜0.5 = 1 / 2 = [2]0.1 0.875 = 7 / 8 = 1 / 2 + 1 / 4 + 1 / 8 = [2]0.111
e = 2047, f > 0
NaN
만 나타냅니다. 🎜🎜그러나 연산에서는: 🎜# 0.3 的逼近 0.25 ([2]0.01) < 0.3 < 0.5 ([2]0.10) 0.296875 ([2]0.0100110) < 0.3 < 0.3046875 ([2]0.0100111) 0.2998046875 ([2]0.01001100110) < 0.3 < 0.30029296875 ([2]0.01001100111) ... 根据公式计算,直到把分数部分的 52 位填满,然后取最靠近的数 0.3 的存储方式:[2]0.010011001100110011001100110011001100110011001100110011 (f = 0011001100110011001100110011001100110011001100110011, e = 1021)
e = 2047, f = 0
f
(무한대, 무한). 🎜🎜작동 중 : 🎜> 0.5 + 0.125 === 0.625 true > 0.1 + 0.2 === 0.3 false
Number.MAX_VALUE
값, 즉 ~= Math.pow(2, 1024) - 1
입니다. 🎜🎜그러나 이 값은 안전하지 않습니다. 1
부터 Number.MAX_VALUE
까지의 숫자는 연속적이지 않고 이산적입니다. 🎜比如:Number.MAX_VALUE - 1
, Number.MAX_VALUE - 2
等数值都无法用公式得出,就存储不了。
所以这里引出了最大安全值 Number.MAX_SAFE_INTEGER
,也就是从 1
到 Number.MAX_SAFE_INTEGER
中间的数字都是连续的,处在这个范围内的数值计算都是安全的。
当 f = 11...11, e = 1075
(中间省略 48 个 1)时,取得这个值 111...11
(中间省略 48 个 1),即 Math.pow(2, 53) - 1
。
大于 Number.MAX_SAFE_INTEGER:Math.pow(2, 53) - 1
的数值都是离散的。
比如:Math.pow(2, 53) + 1
, Math.pow(2, 53) + 3
不能用公式得出,无法存储在内存中。
所以才会有文章开头的现象:
> Math.pow(2, 53) 9007199254740992 > Math.pow(2, 53) + 1 9007199254740992 > Math.pow(2, 53) + 3 9007199254740996
因为 Math.pow(2, 53) + 1
不能用公式得出,就无法存储在内存中,所以只有取最靠近这个数的、能够用公式得出的其他数,Math.pow(2, 53)
,然后存储在内存中,这就是失真,即不安全。
小数中,除了满足 m / (2 ^ n)
(m, n
都是整数)的小数可以用完整的 2 进制表示之外,其他的都不能用完整的 2 进制表示,只能无限的逼近一个 2 进制小数。
(注:[2]
表示二进制,^
表示 N 次方)
0.5 = 1 / 2 = [2]0.1 0.875 = 7 / 8 = 1 / 2 + 1 / 4 + 1 / 8 = [2]0.111
# 0.3 的逼近 0.25 ([2]0.01) < 0.3 < 0.5 ([2]0.10) 0.296875 ([2]0.0100110) < 0.3 < 0.3046875 ([2]0.0100111) 0.2998046875 ([2]0.01001100110) < 0.3 < 0.30029296875 ([2]0.01001100111) ... 根据公式计算,直到把分数部分的 52 位填满,然后取最靠近的数 0.3 的存储方式:[2]0.010011001100110011001100110011001100110011001100110011 (f = 0011001100110011001100110011001100110011001100110011, e = 1021)
从上面可以看出,小数中大部分都只是近似值,只有少部分是真实值,所以只有这少部分的值(满足 m / (2 ^ n)
的小数)可以直接比较大小,其他的都不能直接比较。
> 0.5 + 0.125 === 0.625 true > 0.1 + 0.2 === 0.3 false
为了安全的比较两个小数,引入 Number.EPSILON [Math.pow(2, -52)]
来比较浮点数。
> Math.abs(0.1 + 0.2 - 0.3) < Number.EPSILON true
js
从内存中读取一个数时,最大保留 17
位有效数字。
> 0.010011001100110011001100110011001100110011001100110011 0.30000000000000000 0.3
> 0.010011001100110011001100110011001100110011001100110010 0.29999999999999993
> 0.010011001100110011001100110011001100110011001100110100 0.30000000000000004
> 0.0000010100011110101110000101000111101011100001010001111100 0.020000000000000004
表示 1 与 Number 可表示的大于 1 的最小的浮点数之间的差值。
Math.pow(2, -52)
用于浮点数之间安全的比较大小。
绝对值的最大安全值。
Math.pow(2, 53) - 1
js
所能表示的最大数值(8 个字节能存储的最大数值)。
~= Math.pow(2, 1024) - 1
最小安全值(包括符号)。
-(Math.pow(2, 53) - 1)
js
所能表示的最小数值(绝对值)。
Math.pow(2, -1074)
负无穷大。
-Infinity
正无穷大。
+Infinity
非数字。
0.1 + 0.2
结果是 0.30000000000000004
与 0.3
的逼近算法类似。
0.1 的存储方式:[2]0.00011001100110011001100110011001100110011001100110011010 (f = 1001100110011001100110011001100110011001100110011010, e = 1019) 0.2 的存储方式:[2]0.0011001100110011001100110011001100110011001100110011010 (f = 1001100110011001100110011001100110011001100110011010, e = 1020)
0.1 + 0.2: 0.0100110011001100110011001100110011001100110011001100111 (f = 00110011001100110011001100110011001100110011001100111, e = 1021)
但 f = 00110011001100110011001100110011001100110011001100111
有 53 位,超过了正常的 52 位,无法存储,所以取最近的数:
0.1 + 0.2: 0.010011001100110011001100110011001100110011001100110100 (f = 0011001100110011001100110011001100110011001100110100, e = 1021)
js
读取这个数字为 0.30000000000000004
Math.pow(2, 53) + 1
结果是 Math.pow(2, 53)
因为 Math.pow(2, 53) + 1
不能用公式得出,无法存储在内存中,所以只有取最靠近这个数的、能够用公式得出的其他数。
比这个数小的、最靠近的数:
Math.pow(2, 53) (f = 0000000000000000000000000000000000000000000000000000, e = 1076)
比这个数大的、最靠近的数:
Math.pow(2, 53) + 2 (f = 0000000000000000000000000000000000000000000000000001, e = 1076)
取第一个数:Math.pow(2, 53)
。
所以:
> Math.pow(2, 53) + 1 === Math.pow(2, 53) true
위 내용은 JavaScript의 숫자에 대한 자세한 소개의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!