백엔드 개발 파이썬 튜토리얼 Python의 KNN 알고리즘(k-최근접 이웃 알고리즘)에 대한 자세한 소개(예제 포함)

Python의 KNN 알고리즘(k-최근접 이웃 알고리즘)에 대한 자세한 소개(예제 포함)

Jan 14, 2019 am 11:24 AM
python 데이터 분석

이 기사는 Python의 KNN 알고리즘(k-nearest neighbor 알고리즘)에 대한 자세한 소개를 제공합니다. 이는 특정 참조 가치가 있으므로 도움이 될 수 있습니다.

KNN 알고리즘은 데이터 분류 알고리즘으로, 표본에서 나온 k개의 최근접 이웃 데이터의 범주가 표본의 범주를 나타내므로 k-최근접 이웃 알고리즘이라고도 합니다. KNN 알고리즘은 데이터 마이닝에서 가장 간단한 방법 중 하나이며 대략 다음 단계로 나눌 수 있습니다.

  • 훈련 데이터: 원본 데이터 세트에 있는 모든 데이터 범주의 데이터입니다.

  • 테스트 데이터: 테스트에 사용할 데이터 샘플입니다.

  • 데이터 처리

우리가 얻는 테스트 데이터는 일반적으로 훈련 데이터와 다른 차원입니다. 이때 테스트 데이터의 차원을 Python의 numpy가 제공하는 것과 동일하게 늘려야 합니다. 타일() 함수를 사용하면 테스트 데이터의 차원을 높이는 데 도움이 될 수 있습니다.

  • 데이터 벡터화

테스트 데이터의 차원이 증가한 후 샘플 지점으로부터의 거리를 계산하려면 이때 데이터를 벡터화해야 합니다. 소위 벡터화는 매우 간단합니다. 즉, 동일한 차원을 가진 두 개의 데이터를 뺍니다.

  • 유클리드 거리 계산

유클리드 거리, 즉 유클리드 거리는 피타고라스 정리를 이용하여 계산할 수 있으며, 상승된 테스트 데이터와 훈련 데이터를 뺀 벡터군의 각 벡터는 제곱근과 제곱근입니다. of 는 거리로 구성된 벡터 그룹을 얻는 데 사용될 수 있습니다.

  • 거리에 따라 분류

샘플 포인트로부터 거리가 가장 짧은 k 데이터를 선택하고, 이 k 데이터 중 어떤 데이터 카테고리가 가장 많이 나타나는지 세어 보면 샘플 포인트의 데이터 카테고리를 결정할 수 있습니다.

알고리즘 구현:

1 먼저 numpy와 연산자를 도입해야 합니다. from numpy import *import 연산자를 입력하세요. from numpy import *import operator

2.接下来我们需要定义一个knn函数,在knn函数中我们需要引入四个参数,分别为k、训练数据、测试数据和数据类别。

3.接下来我们需要先对数据进行升维操作,需要用到numpy下的tile(a,(b,c))函数,a为要进行升维操作的数据,也就是测试数据,b为要对测试数据升维的行数据,c为要对测试数据升维的列数据。

Python의 KNN 알고리즘(k-최근접 이웃 알고리즘)에 대한 자세한 소개(예제 포함)

4.在上一操作中,我们一般需要获得训练数据的行数和列数,这时需要用到shape()函数,shape()函数返回的是由训练数据的行和列组成的元组,我们想要知道训练数据的行数或列数只需通过数组元素下标的方式引用。

Python의 KNN 알고리즘(k-최근접 이웃 알고리즘)에 대한 자세한 소개(예제 포함)

5.数据的维度相同后,我们要将两数据相减得到一个向量,再计算这个向量每个值的平方和的开方即得测试数据到训练数据的距离,再调用argsort()函数将距离按照升序排列,不过该函数返回的是数组元素的下标。

Python의 KNN 알고리즘(k-최근접 이웃 알고리즘)에 대한 자세한 소개(예제 포함)

6.接下来我们为了直观的看到不同数据类别的出现次数,需要设置一个空字典来存放这些数据,在得到字典后,我们需要将字典按照不同数据类别的出现次数降序排列,进而返回字典的第一个值即得到测试数据的数据类别。

7.算法代码如下:

from numpy import *
import operator
def knn(k, test_data, train_data, labels):
    train_size = train_data.shape[0]    #获取训练数据的行数
    test_size = tile(test_data, (train_size, 1))    #将测试数据的行升维
    minus = test_size-train_data    #得到向量
    sq_minus = minus**2
    sum_sq_minus = sq_minus.sum(axis=1)        #得到平方后的每个数组内元素的和
    distc = sum_sq_minus**0.5
    sort_distc = distc.argsort()    #将距离按升序排列
    static = {}
    for i in range(0, k):
        vote = labels[sort_distc[i]]    #获取数据类型
        static[vote] = static.get(vote, 0)+1    #统计每个数据类型的出现次数
    sort_static = sorted(static.items(), key=operator.itemgetter(1), reverse=True)    #将字典中的元素按出现次数降序排列
    return sort_static[0][0]    #返回出现次数最多的数据类型
로그인 후 복사

8.算法中需要对字典进行排序,因此需要用到sorted()函数,sorted()函数共有三个参数,分别为items(),operator.itemgetter(),reverse,默认的排序为升序,我们要想按照降序排列需要令第三个参数为True,在这里我们是按照字典的values进行排序的,因此我们需要输入sorted(static.items(), key=operator.itemgetter(1), reverse=True)

2. 다음으로 knn 함수를 정의해야 합니다. knn 함수에는 k, 훈련 데이터, 테스트 데이터 및 데이터 카테고리라는 네 가지 매개변수를 도입해야 합니다.

3. 다음으로 먼저 데이터에 대한 차원 향상 작업을 수행해야 합니다. numpy에서 타일(a,(b,c)) 함수를 사용해야 합니다. , b는 테스트 데이터로 업그레이드할 행 데이터이고, c는 테스트 데이터로 업그레이드할 열 데이터이다. Python의 KNN 알고리즘(k-최근접 이웃 알고리즘)에 대한 자세한 소개(예제 포함)

Python의 KNN 알고리즘(k-최근접 이웃 알고리즘)에 대한 자세한 소개(예제 포함)

4 이전 작업에서는 일반적으로 훈련 데이터의 행과 열 수를 가져와야 합니다. 이 경우 Shape() 함수는 행과 열을 반환합니다. 학습 데이터의 열 튜플, 학습 데이터의 행 또는 열 수를 알고 싶다면 배열 요소의 첨자를 통해서만 참조하면 됩니다. Python의 KNN 알고리즘(k-최근접 이웃 알고리즘)에 대한 자세한 소개(예제 포함)

5 데이터의 크기가 동일해지면 두 데이터를 빼서 벡터를 얻은 다음 이 벡터의 각 값의 제곱합의 제곱근을 계산하여 거리를 구해야 합니다. 테스트 데이터를 훈련 데이터로 변환한 다음 argsort() 함수를 호출하면 거리가 오름차순으로 정렬되지만 함수는 배열 요소의 첨자를 반환합니다. 🎜🎜🎜🎜🎜🎜6. 다음으로, 다양한 데이터 카테고리의 발생 횟수를 직관적으로 확인하기 위해서는 데이터를 저장할 빈 사전을 설정해야 합니다. 사전을 가져온 후에는 사전을 내림차순으로 정렬해야 합니다. 그런 다음 사전의 첫 번째 값을 반환하여 테스트 데이터의 데이터 카테고리를 가져옵니다. 🎜🎜7. 알고리즘 코드는 다음과 같습니다. 🎜rrreee🎜8. 사전은 알고리즘에서 정렬해야 하므로 sorted() 함수에는 items()라는 세 가지 매개변수가 있습니다. , Operator.itemgetter() , 반대로 기본 정렬은 오름차순입니다. 내림차순으로 정렬하려면 세 번째 매개변수를 True로 설정해야 합니다. 여기서는 사전의 값에 따라 정렬합니다. 이므로 sorted(static.items() , key=operator.itemgetter(1), reverse=True)를 입력해야 합니다. Operator.itemgetter() 함수의 값이 1이면 는 사전의 값에 따라 정렬되며, 값이 0인 경우 정렬할 사전의 키에 따라 정렬됩니다. 🎜🎜🎜🎜🎜🎜🎜9. 정렬 후 요소에 액세스하는 방법은 2차원 배열 요소에 액세스하는 방법과 동일합니다🎜🎜🎜🎜🎜🎜🎜🎜

위 내용은 Python의 KNN 알고리즘(k-최근접 이웃 알고리즘)에 대한 자세한 소개(예제 포함)의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 채팅 명령 및 사용 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

PHP 및 Python : 두 가지 인기있는 프로그래밍 언어를 비교합니다 PHP 및 Python : 두 가지 인기있는 프로그래밍 언어를 비교합니다 Apr 14, 2025 am 12:13 AM

PHP와 Python은 각각 고유 한 장점이 있으며 프로젝트 요구 사항에 따라 선택합니다. 1.PHP는 웹 개발, 특히 웹 사이트의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 간결한 구문을 가진 데이터 과학, 기계 학습 및 인공 지능에 적합하며 초보자에게 적합합니다.

Debian Readdir가 다른 도구와 통합하는 방법 Debian Readdir가 다른 도구와 통합하는 방법 Apr 13, 2025 am 09:42 AM

데비안 시스템의 readdir 함수는 디렉토리 컨텐츠를 읽는 데 사용되는 시스템 호출이며 종종 C 프로그래밍에 사용됩니다. 이 기사에서는 ReadDir를 다른 도구와 통합하여 기능을 향상시키는 방법을 설명합니다. 방법 1 : C 언어 프로그램을 파이프 라인과 결합하고 먼저 C 프로그램을 작성하여 readDir 함수를 호출하고 결과를 출력하십시오.#포함#포함#포함#포함#includinTmain (intargc, char*argv []) {dir*dir; structdirent*entry; if (argc! = 2) {

파이썬과 시간 : 공부 시간을 최대한 활용 파이썬과 시간 : 공부 시간을 최대한 활용 Apr 14, 2025 am 12:02 AM

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

NGINX SSL 인증서 업데이트 Debian Tutorial NGINX SSL 인증서 업데이트 Debian Tutorial Apr 13, 2025 am 07:21 AM

이 기사에서는 Debian 시스템에서 NginxSSL 인증서를 업데이트하는 방법에 대해 안내합니다. 1 단계 : CertBot을 먼저 설치하십시오. 시스템에 CERTBOT 및 PYTHON3-CERTBOT-NGINX 패키지가 설치되어 있는지 확인하십시오. 설치되지 않은 경우 다음 명령을 실행하십시오. sudoapt-getupdatesudoapt-getinstallcertbotpython3-certbot-nginx 2 단계 : 인증서 획득 및 구성 rectbot 명령을 사용하여 nginx를 획득하고 nginx를 구성하십시오.

Debian OpenSSL에서 HTTPS 서버를 구성하는 방법 Debian OpenSSL에서 HTTPS 서버를 구성하는 방법 Apr 13, 2025 am 11:03 AM

데비안 시스템에서 HTTPS 서버를 구성하려면 필요한 소프트웨어 설치, SSL 인증서 생성 및 SSL 인증서를 사용하기 위해 웹 서버 (예 : Apache 또는 Nginx)를 구성하는 등 여러 단계가 포함됩니다. 다음은 Apacheweb 서버를 사용하고 있다고 가정하는 기본 안내서입니다. 1. 필요한 소프트웨어를 먼저 설치하고 시스템이 최신 상태인지 확인하고 Apache 및 OpenSSL을 설치하십시오 : Sudoaptupdatesudoaptupgradesudoaptinsta

데비안에 대한 Gitlab의 플러그인 개발 안내서 데비안에 대한 Gitlab의 플러그인 개발 안내서 Apr 13, 2025 am 08:24 AM

데비안에서 gitlab 플러그인을 개발하려면 몇 가지 특정 단계와 지식이 필요합니다. 다음은이 과정을 시작하는 데 도움이되는 기본 안내서입니다. Gitlab을 먼저 설치하려면 Debian 시스템에 Gitlab을 설치해야합니다. Gitlab의 공식 설치 매뉴얼을 참조 할 수 있습니다. API 액세스 토큰을 얻으십시오 API 통합을 수행하기 전에 Gitlab의 API 액세스 토큰을 먼저 가져와야합니다. Gitlab 대시 보드를 열고 사용자 설정에서 "AccessTokens"옵션을 찾은 다음 새 액세스 토큰을 생성하십시오. 생성됩니다

Apache는 어떤 서비스입니까? Apache는 어떤 서비스입니까? Apr 13, 2025 pm 12:06 PM

아파치는 인터넷 뒤의 영웅입니다. 웹 서버 일뿐 만 아니라 큰 트래픽을 지원하고 동적 콘텐츠를 제공하는 강력한 플랫폼이기도합니다. 모듈 식 설계를 통해 매우 높은 유연성을 제공하여 필요에 따라 다양한 기능을 확장 할 수 있습니다. 그러나 Modularity는 또한 신중한 관리가 필요한 구성 및 성능 문제를 제시합니다. Apache는 사용자 정의가 필요한 서버 시나리오에 적합하고 복잡한 요구를 충족시킵니다.

Apache는 어떤 언어로 작성됩니까? Apache는 어떤 언어로 작성됩니까? Apr 13, 2025 pm 12:42 PM

Apache는 C로 작성되었습니다. 언어는 속도, 안정성, 이식성 및 직접 하드웨어 액세스를 제공하여 웹 서버 개발에 이상적입니다.

See all articles