Python에서 Pandas 및 xlsxwriter를 사용하여 xlsx 파일을 읽고 쓰는 방법 소개(코드 포함)
이 기사에서는 Pandas 및 xlsxwriter(코드 포함)를 사용하여 Python에서 xlsx 파일을 읽고 쓰는 방법을 소개합니다. 도움이 필요한 친구들이 참고할 수 있기를 바랍니다.
기존 xlsx 파일은 다음과 같습니다.
1. 처음 n개 행의 모든 데이터를 읽습니다.
# coding: utf-8 import pandas as pd # 1. 读取前n行所有数据 df = pd.read_excel('school.xlsx')#读取xlsx中第一个sheet data1 = df.head(7) # 读取前7行的所有数据,dataFrame结构 data2 = df.values #list形式,读取表格所有数据 print("获取到所有的值:\n{0}".format(data1)) #格式化输出 print("获取到所有的值:\n{0}".format(data2)) #格式化输出
2. 특정 행과 특정 열을 읽습니다.
# coding: utf-8 import pandas as pd # 2. 读取特定行,特定列 df = pd.read_excel('school.xlsx') #读取xlsx中第一个sheet data1 = df.ix[0].values #读取第一行所有数据,0表示第一行,不包含表头 data2 = df.ix[1,1] #读取指定行列位置数据 data3 = df.ix[[1,2]].values #读取指定多行 data4 = df.ix[:,[0]].values #读取指定列的所有行 #data4 = df[u'class'].values #同上 data5 = df.ix[:,[u'class',u'name']].values #读取指定键值列的所有行 print("数据:\n{0}".format(data1)) print("数据:\n{0}".format(data2)) print("数据:\n{0}".format(data3)) print("数据:\n{0}".format(data4)) print("数据:\n{0}".format(data5))
3. 열 이름
# coding: utf-8 import pandas as pd # 3. 获取xlsx文件行号,所有列名称 df = pd.read_excel('school.xlsx') #读取xlsx中第一个sheet print("输出行号列表{}".format(df.index.values)) # 获取xlsx文件的所有行号 print("输出列标题{}".format(df.columns.values)) #所有列名称
4.xlsx 데이터를 읽어 사전으로 변환
# coding: utf-8 import pandas as pd # 4. 读取xlsx数据转换为字典 df = pd.read_excel('school.xlsx') #读取xlsx中第一个sheet test_data=[] for i in df.index.values:#获取行号的索引,并对其进行遍历: #根据i来获取每一行指定的数据 并利用to_dict转成字典 row_data=df.ix[i,['id','name','class','data','stature']].to_dict() test_data.append(row_data) print("最终获取到的数据是:{0}".format(test_data))
5. xlsx 파일 작성
#coding: utf-8 import xlsxwriter # 创建工作簿 file_name = "first_book.xlsx" workbook = xlsxwriter.Workbook(file_name) # 创建工作表 worksheet = workbook.add_worksheet('sheet1') # 写单元格 worksheet.write(0, 0, 'id') worksheet.write(0,1, 'name') worksheet.write(0,2, 'class') worksheet.write(0,3, 'data') # 写行 worksheet.write_row(1, 0, [1, 2, 3]) # 写列,其中列D需要大写 worksheet.write_column('D2', ['a', 'b', 'c']) # 关闭工作簿 workbook.close()
작성된 xlsx 파일은 다음과 같습니다
위 내용은 Python에서 Pandas 및 xlsxwriter를 사용하여 xlsx 파일을 읽고 쓰는 방법 소개(코드 포함)의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











PHP와 Python은 고유 한 장점과 단점이 있으며 선택은 프로젝트 요구와 개인 선호도에 달려 있습니다. 1.PHP는 대규모 웹 애플리케이션의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 데이터 과학 및 기계 학습 분야를 지배합니다.

Python과 JavaScript는 커뮤니티, 라이브러리 및 리소스 측면에서 고유 한 장점과 단점이 있습니다. 1) Python 커뮤니티는 친절하고 초보자에게 적합하지만 프론트 엔드 개발 리소스는 JavaScript만큼 풍부하지 않습니다. 2) Python은 데이터 과학 및 기계 학습 라이브러리에서 강력하며 JavaScript는 프론트 엔드 개발 라이브러리 및 프레임 워크에서 더 좋습니다. 3) 둘 다 풍부한 학습 리소스를 가지고 있지만 Python은 공식 문서로 시작하는 데 적합하지만 JavaScript는 MDNWebDocs에서 더 좋습니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

CentOS 시스템에서 Pytorch GPU 가속도를 활성화하려면 Cuda, Cudnn 및 GPU 버전의 Pytorch를 설치해야합니다. 다음 단계는 프로세스를 안내합니다. CUDA 및 CUDNN 설치 CUDA 버전 호환성 결정 : NVIDIA-SMI 명령을 사용하여 NVIDIA 그래픽 카드에서 지원하는 CUDA 버전을보십시오. 예를 들어, MX450 그래픽 카드는 CUDA11.1 이상을 지원할 수 있습니다. Cudatoolkit 다운로드 및 설치 : NVIDIACUDATOOLKIT의 공식 웹 사이트를 방문하여 그래픽 카드에서 지원하는 가장 높은 CUDA 버전에 따라 해당 버전을 다운로드하여 설치하십시오. CUDNN 라이브러리 설치 :

Docker는 Linux 커널 기능을 사용하여 효율적이고 고립 된 응용 프로그램 실행 환경을 제공합니다. 작동 원리는 다음과 같습니다. 1. 거울은 읽기 전용 템플릿으로 사용되며, 여기에는 응용 프로그램을 실행하는 데 필요한 모든 것을 포함합니다. 2. Union 파일 시스템 (Unionfs)은 여러 파일 시스템을 스택하고 차이점 만 저장하고 공간을 절약하고 속도를 높입니다. 3. 데몬은 거울과 컨테이너를 관리하고 클라이언트는 상호 작용을 위해 사용합니다. 4. 네임 스페이스 및 CGroup은 컨테이너 격리 및 자원 제한을 구현합니다. 5. 다중 네트워크 모드는 컨테이너 상호 연결을 지원합니다. 이러한 핵심 개념을 이해 함으로써만 Docker를 더 잘 활용할 수 있습니다.

Minio Object Storage : Centos System Minio 하의 고성능 배포는 Go Language를 기반으로 개발 한 고성능 분산 객체 저장 시스템입니다. Amazons3과 호환됩니다. Java, Python, JavaScript 및 Go를 포함한 다양한 클라이언트 언어를 지원합니다. 이 기사는 CentOS 시스템에 대한 Minio의 설치 및 호환성을 간단히 소개합니다. CentOS 버전 호환성 Minio는 다음을 포함하되 이에 국한되지 않는 여러 CentOS 버전에서 확인되었습니다. CentOS7.9 : 클러스터 구성, 환경 준비, 구성 파일 설정, 디스크 파티셔닝 및 미니를 다루는 완전한 설치 안내서를 제공합니다.

CentOS 시스템에 대한 Pytorch 분산 교육에는 다음 단계가 필요합니다. Pytorch 설치 : 전제는 Python과 PIP가 CentOS 시스템에 설치된다는 것입니다. CUDA 버전에 따라 Pytorch 공식 웹 사이트에서 적절한 설치 명령을 받으십시오. CPU 전용 교육의 경우 다음 명령을 사용할 수 있습니다. PipinStalltorchtorchvisiontorchaudio GPU 지원이 필요한 경우 CUDA 및 CUDNN의 해당 버전이 설치되어 있는지 확인하고 해당 PyTorch 버전을 설치하려면 설치하십시오. 분산 환경 구성 : 분산 교육에는 일반적으로 여러 기계 또는 단일 기계 다중 GPU가 필요합니다. 장소

CentOS 시스템에 Pytorch를 설치할 때는 적절한 버전을 신중하게 선택하고 다음 주요 요소를 고려해야합니다. 1. 시스템 환경 호환성 : 운영 체제 : CentOS7 이상을 사용하는 것이 좋습니다. Cuda 및 Cudnn : Pytorch 버전 및 Cuda 버전은 밀접하게 관련되어 있습니다. 예를 들어, pytorch1.9.0은 cuda11.1을 필요로하고 Pytorch2.0.1은 cuda11.3을 필요로합니다. CUDNN 버전도 CUDA 버전과 일치해야합니다. Pytorch 버전을 선택하기 전에 호환 CUDA 및 CUDNN 버전이 설치되었는지 확인하십시오. 파이썬 버전 : Pytorch 공식 지점

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.
