빅데이터 분석가는 무엇을 배워야 할까요?
빅 데이터 분석가는 다양한 분석 방법을 기반으로 의사 결정 지원을 위해 빅 데이터를 과학적으로 분석, 마이닝, 표시 및 사용하는 과정을 의미합니다. 빅 데이터 분석가는 중국 상무부가 규정을 발표했습니다. 빅데이터에 대해 데이터 분석가가 수준 인증을 수행합니다.
분석가의 역할
빅데이터 분석가는 기업이 기업의 현재 상황과 경쟁 환경, 위험 평가 및 의사 결정 지원을 명확하게 이해하고, 이를 통해 얻을 수 있는 가치를 최대한 활용할 수 있도록 해줍니다. 빅 데이터를 수집하고 데이터 마이닝을 수행합니다. 데이터 및 프리젠테이션 후에는 명확하고 정확한 데이터 기반 보고서가 기업 의사 결정자에게 제공됩니다. 따라서 빅데이터 분석가는 더 이상 단순한 IT 인력이 아닌, 기업의 의사결정과 개발에 참여할 수 있는 핵심 인물입니다.
기존 데이터 분석가에 비해 빅 데이터 분석가는 정보 사일로를 깨고 다양한 데이터 소스를 활용하고, 대용량 데이터에서 데이터 패턴을 찾고, 대용량 데이터에서 데이터 이상을 발견하는 방법을 배워야 합니다. 빅데이터 데이터 분석 및 마이닝 플랫폼의 계획, 개발, 운영 및 최적화를 담당하며, 프로젝트 설계에 따라 데이터 모델, 데이터 마이닝 및 처리 알고리즘을 개발하고 데이터 탐색 및 모델 출력을 통해 분석을 수행합니다.
빅데이터 분석가는 무엇을 배워야 할까요?
1. 수학적 지식
수학적 지식은 데이터 분석가의 기본 지식입니다. 후배 데이터 분석가의 경우 기술 통계와 관련된 몇 가지 기본 내용을 이해하고 공식을 계산하는 특정 능력을 갖추는 것은 보너스입니다.
시니어 데이터 분석가에게는 통계 모델 관련 지식이 필수 능력이며, 선형 대수학(주로 행렬 계산 관련 지식)에 대한 어느 정도 이해하고 있는 것이 가장 좋습니다.
데이터 마이닝 엔지니어는 통계 외에도 다양한 알고리즘을 능숙하게 사용할 수 있어야 하며 수학에 대한 요구 사항이 가장 높습니다.
따라서 데이터 분석을 배우기 위해 반드시 아주 좋은 수학 능력이 필요한 것은 아닙니다. 단지 어느 방향으로 발전하고 싶은지에 따라 달라질 뿐입니다. 데이터 분석에도 "문학적" 측면이 있는데, 특히 여자아이들은 문서 작성 방향으로 발전할 수 있습니다.
2. 분석 도구
후배 데이터 분석가의 경우 Excel을 다룰 수 있어야 하며 VBA를 능숙하게 사용할 수 있어야 합니다. 또한, 통계분석 도구인 SPSS도 배워야 합니다.
고급 데이터 분석가에게는 분석 도구 사용이 핵심 역량입니다. VBA는 기본 필수입니다. SPSS/SAS/R은 상황에 따라 다른 분석 도구(예: Matlab)를 능숙하게 사용해야 합니다.
데이터 마이닝 엔지니어라면... 뭐, 그냥 엑셀을 쓸 줄 아는 것만으로도 충분해요.
3. 프로그래밍 언어
후배 데이터 분석가의 경우 SQL 쿼리를 작성할 수 있고, 필요한 경우 Hadoop 및 Hive 쿼리를 작성할 수 있으면 기본적으로 괜찮습니다.
고급 데이터 분석가라면 SQL 외에도 절반의 노력으로 두 배의 결과를 얻을 수 있는 데이터를 얻고 처리할 수 있는 Python을 배워야 합니다. 물론 다른 프로그래밍 언어도 가능합니다.
데이터마이닝 엔지니어라면 Hadoop, Python/Java/C++ 중 하나 이상에 익숙해야 하고, Shell을 사용할 수 있어야 합니다... 한마디로 프로그래밍 언어는 확실히 데이터마이닝 엔지니어의 핵심 역량입니다.
4. 비즈니스 이해
비즈니스 이해는 데이터 분석가의 모든 작업의 기초라고 해도 과언이 아닙니다. 데이터 수집 계획, 지표 선택, 심지어 통찰력의 최종 결론도 모두 데이터 분석가에 달려 있습니다. 데이터 분석가의 비즈니스 자체에 대한 이해.
주니어 데이터 분석가의 주요 업무는 데이터를 추출하고 간단한 차트를 만드는 것뿐 아니라, 약간의 통찰력과 결론을 얻는 것입니다. 비즈니스에 대한 기본적인 이해만 있으면 충분합니다.
시니어 데이터 분석가는 비즈니스에 대한 깊은 이해가 필요하며, 실제 비즈니스에 도움이 될 수 있는 데이터를 기반으로 효과적인 의견을 추출할 수 있어야 합니다.
데이터 마이닝 엔지니어라면 비즈니스에 대한 기본적인 이해만으로도 충분하지만, 여전히 기술 역량을 발휘하는 데 중점을 두어야 합니다.
훌륭한 데이터 분석가에게는 비즈니스 능력이 필수입니다. 이미 특정 산업에 대해 잘 알고 있다면 데이터 분석을 배우는 것이 매우 올바른 접근 방식입니다. 이제 막 졸업하고 업계 경험이 없더라도 천천히 발전할 수 있으니 걱정할 필요가 없습니다.
5. 논리적 사고
이 능력은 이전 기사에서 거의 언급되지 않았기 때문에 이번에는 별도로 이야기하겠습니다.
주니어 데이터 분석가의 경우 논리적 사고는 데이터 분석 프로세스의 모든 단계의 목적에 주로 반영되어 어떤 목표를 달성하기 위해 어떤 수단을 사용해야 하는지를 알 수 있습니다.
선임 데이터 분석가의 경우 완전하고 효과적인 분석 프레임워크 구축, 분석 개체 간의 상관 관계 이해, 각 지표 변경의 원인과 결과 및 비즈니스에 미치는 영향을 파악하는 데 논리적 사고가 주로 반영됩니다.
데이터마이닝 엔지니어에게 논리적 사고는 비즈니스와 관련된 분석 작업에만 반영되는 것이 아니라, 알고리즘 논리, 프로그램 논리 등도 포함되기 때문에 논리적 사고에 대한 요구사항도 가장 높습니다.
6. 데이터 시각화
데이터 시각화는 굉장히 거창하게 들리지만 실제로는 넓은 범위를 포괄합니다. PPT에 데이터 차트를 넣는 것도 데이터 시각화라고 볼 수 있으니 꼭 필요한 능력인 것 같아요.
후배 데이터 분석가라면 엑셀과 PPT를 이용해 기본적인 차트와 보고서를 작성할 수 있고, 데이터를 명확하게 표시할 수 있다면 목표를 달성한 것입니다.
선임 데이터 분석가는 더 나은 데이터 시각화 방법을 모색하고, 더 효과적인 데이터 시각화 도구를 사용하고, 실제 필요에 따라 단순하거나 복잡하지만 청중이 보기에 적합한 데이터 시각화 콘텐츠를 만들어야 합니다.
데이터 마이닝 엔지니어의 경우 일부 데이터 시각화 도구를 이해하고 필요에 따라 복잡한 시각적 차트를 만들어야 하지만 일반적으로 미화 문제를 너무 많이 고려할 필요는 없습니다.
7. 조율과 소통
후배 데이터 분석가에게는 비즈니스에 대한 이해, 데이터 찾기, 보고서 설명 등 모두 서로 다른 부서의 사람들을 상대해야 하기 때문에 소통 능력이 매우 중요합니다.
선임 데이터 분석가의 경우 독립적으로 프로젝트를 주도하거나 제품과 협력해야 하므로 의사소통 기술 외에도 프로젝트 조정 기술도 필요합니다.
데이터 마이닝 엔지니어의 경우 사람과 소통하는 기술적인 측면이 더 많고 비즈니스 측면은 상대적으로 적으며 의사소통 및 조정에 대한 요구 사항은 상대적으로 낮습니다.
위 내용은 빅데이터 분석가는 무엇을 배워야 할까요?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











빅 데이터 구조 처리 기술: 청킹(Chunking): 데이터 세트를 분할하고 청크로 처리하여 메모리 소비를 줄입니다. 생성기: 전체 데이터 세트를 로드하지 않고 데이터 항목을 하나씩 생성하므로 무제한 데이터 세트에 적합합니다. 스트리밍: 파일을 읽거나 결과를 한 줄씩 쿼리하므로 대용량 파일이나 원격 데이터에 적합합니다. 외부 저장소: 매우 큰 데이터 세트의 경우 데이터를 데이터베이스 또는 NoSQL에 저장합니다.

인터넷 시대에 빅데이터는 새로운 자원으로 자리 잡았으며, 빅데이터 분석 기술의 지속적인 발전으로 인해 빅데이터 프로그래밍에 대한 수요가 더욱 절실해지고 있습니다. 널리 사용되는 프로그래밍 언어로서 빅 데이터 프로그래밍에서 C++의 고유한 장점은 점점 더 두드러지고 있습니다. 아래에서는 C++ 빅데이터 프로그래밍에 대한 실제 경험을 공유하겠습니다. 1. 적절한 데이터 구조 선택 적절한 데이터 구조를 선택하는 것은 효율적인 빅데이터 프로그램을 작성하는 데 중요한 부분입니다. C++에는 배열, 연결 목록, 트리, 해시 테이블 등과 같이 사용할 수 있는 다양한 데이터 구조가 있습니다.

AEC/O(Architecture, Engineering & Construction/Operation)는 건설 산업 분야에서 건축 설계, 엔지니어링 설계, 시공 및 운영을 제공하는 종합 서비스를 말합니다. 2024년 AEC/O 산업은 기술 발전으로 인해 변화하는 도전에 직면하게 될 것입니다. 올해는 첨단 기술이 집약되어 설계, 시공, 운영의 패러다임 전환을 예고하는 해가 될 것으로 예상됩니다. 이러한 변화에 대응하여 업계에서는 빠르게 변화하는 세계의 요구 사항에 적응하기 위해 작업 프로세스를 재정의하고 우선 순위를 조정하며 협업을 강화하고 있습니다. AEC/O 산업의 다음 5가지 주요 트렌드는 2024년 핵심 주제가 될 것이며, 더욱 통합되고 대응력이 뛰어나며 지속 가능한 미래로 나아갈 것을 권장합니다. 통합 공급망, 스마트 제조

1. 58초상화 플랫폼 구축 배경 먼저, 58초상화 플랫폼 구축 배경에 대해 말씀드리겠습니다. 1. 기존 프로파일링 플랫폼의 전통적인 사고로는 더 이상 충분하지 않습니다. 사용자 프로파일링 플랫폼을 구축하려면 여러 비즈니스 라인의 데이터를 통합하여 정확한 사용자 초상화를 구축하는 데이터 웨어하우스 모델링 기능이 필요합니다. 그리고 알고리즘 측면의 기능을 제공해야 하며, 마지막으로 사용자 프로필 데이터를 효율적으로 저장, 쿼리 및 공유하고 프로필 서비스를 제공할 수 있는 데이터 플랫폼 기능도 있어야 합니다. 자체 구축한 비즈니스 프로파일링 플랫폼과 중간 사무실 프로파일링 플랫폼의 주요 차이점은 자체 구축한 프로파일링 플랫폼이 단일 비즈니스 라인에 서비스를 제공하고 필요에 따라 사용자 정의할 수 있다는 것입니다. 모델링하고 보다 일반적인 기능을 제공합니다. 2.58 Zhongtai 초상화 구성 배경의 사용자 초상화

오늘날 빅데이터 시대에 데이터 처리 및 분석은 다양한 산업 발전에 중요한 지원 요소가 되었습니다. 개발 효율성이 높고 성능이 뛰어난 프로그래밍 언어로서 Go 언어는 점차 빅데이터 분야에서 주목을 받고 있습니다. 그러나 Go 언어는 Java, Python 등 다른 언어에 비해 빅데이터 프레임워크에 대한 지원이 상대적으로 부족하여 일부 개발자에게 어려움을 초래했습니다. 이 글에서는 Go 언어에서 빅데이터 프레임워크가 부족한 주된 이유를 살펴보고, 그에 따른 솔루션을 제안하고, 구체적인 코드 예제를 통해 이를 설명하겠습니다. 1. 언어로 이동

Yizhiwei의 2023년 가을 제품 출시가 성공적으로 마무리되었습니다! 컨퍼런스의 주요 내용을 함께 살펴보겠습니다! 1. 지능적 포용적 개방성, 디지털 트윈의 생산성 향상 Kangaroo Cloud의 공동 창업자이자 Yizhiwei의 CEO인 Ning Haiyuan은 개회 연설에서 다음과 같이 말했습니다. 올해 회사 전략 회의에서 우리는 제품 연구 개발의 주요 방향을 다음과 같이 정했습니다. '지능형 포괄 개방성' '3대 핵심역량', '지능형 포괄 개방성' 3대 핵심 키워드에 초점을 맞춰 '디지털 트윈을 생산력으로 만든다'는 개발 목표를 더 제시했다. 2. EasyTwin: 사용하기 쉬운 새로운 디지털 트윈 엔진 탐색 1. 0.1에서 1.0까지 디지털 트윈 퓨전 렌더링 엔진을 계속 탐색하여 성숙한 3D 편집 모드, 편리한 대화형 청사진 및 대규모 모델 자산을 갖춘 더 나은 솔루션을 제공합니다.

오픈 소스 프로그래밍 언어로서 Go 언어는 최근 몇 년 동안 점차적으로 광범위한 관심과 사용을 받아 왔습니다. 단순성, 효율성 및 강력한 동시 처리 기능으로 인해 프로그래머가 선호합니다. 빅데이터 처리 분야에서도 Go 언어는 강력한 잠재력을 갖고 있으며, 대용량 데이터를 처리하고 성능을 최적화하며 다양한 빅데이터 처리 도구 및 프레임워크와 잘 통합될 수 있습니다. 본 글에서는 Go 언어의 빅데이터 처리에 대한 몇 가지 기본 개념과 기법을 소개하고, 구체적인 코드 예시를 통해 Go 언어를 사용하는 방법을 보여드리겠습니다.

빅 데이터 처리에서 인메모리 데이터베이스(예: Aerospike)를 사용하면 컴퓨터 메모리에 데이터를 저장하고 디스크 I/O 병목 현상을 제거하며 데이터 액세스 속도를 크게 높이기 때문에 C++ 애플리케이션의 성능을 향상시킬 수 있습니다. 실제 사례에서는 인메모리 데이터베이스를 사용할 때의 쿼리 속도가 하드 디스크 데이터베이스를 사용할 때보다 몇 배 더 빠른 것으로 나타났습니다.