파이썬에서 방정식을 푸는 세 가지 방법
파이썬에서 연립방정식을 푸는 세 가지 방법:
관련 권장 사항: "python video"
Numpy는 연립방정식을 푼다
x + 2y = 3 4x + 5y = 6
물론 수동으로 분석 솔루션을 작성할 수도 있고 그런 다음 함수를 작성합니다. 이는 실제로 Python을 사용하여 "수치 계산"을 수행하는 것입니다. 그러나 실제로 numpy.linalg.solve는 선형 방정식 시스템을 직접 풀 수 있습니다.
일반적으로 우리는 선형 방정식 시스템을 가정합니다. 는 Ax=b와 같이 풀립니다. 그 중 A는 계수 행렬이고, b는 1차원(n 차원도 허용되며 이는 아래에서 언급함)이며, x는 2개의 가장 간단한 선형 방정식 시스템을 취하는 미지의 변수입니다. 위의 변수를 예로 들어 numpy.linalg.solve를 사용합니다. 다음과 같이 작성할 수 있습니다.
In [1]: import numpy as np ...: A = np.mat('1,2; 4,5') # 构造系数矩阵 A ...: b = np.mat('3,6').T # 构造转置矩阵 b (这里必须为列向量) ...: r = np.linalg.solve(A,b) # 调用 solve 函数求解 ...: print r ...: Out[1]: [[-1.] [ 2.]]
그럼 앞서 언급한 "n차원" 상황은 무엇인가요? 실제로 이는 동일한 형태를 갖는 두 변수의 선형 방정식의 여러 세트를 동시에 푸는 것입니다. 예를 들어, 동일한 형태를 갖는 두 변수의 선형 방정식의 두 세트를 동시에 풀고 싶다면:
x + 2y = 3 4x + 5y = 6
및
x + 2y = 7 4x + 5y = 8
를 다음과 같이 작성할 수 있습니다.
In [2]: import numpy as np ...: A = np.mat('1,2; 4,5') # 构造系数矩阵 A ...: b = np.array([[3,6], [7,8]]).T # 构造转置矩阵 b (这里必须为列向量), ...: 注意这里用的是 array ...: r = np.linalg.solve(A,b) # 调用 solve 函数求解 ...: print r ...: Out[2]: [[-1. -6.33333333] [ 2. 6.66666667]]
SciPy는 비선형 방정식 시스템을 해결합니다.
일반적으로 func만 사용하면 되며, Func는 우리가 직접 구성한 함수입니다. 풀어야 할 방정식 시스템의 왼쪽 끝(오른쪽 끝은 0)이고 x0은 주어진 초기 값입니다.
풀려는 구체적인 예를 살펴보겠습니다.
x + 2y + 3z - 6 = 0 5 * (x ** 2) + 6 * (y ** 2) + 7 * (z ** 2) - 18 = 0 9 * (x ** 3) + 10 * (y ** 3) + 11 * (z ** 3) - 30 = 0
는 다음과 같이 쓸 수 있습니다.
In [3]: from scipy.optimize import fsolve ...: ...: def func(i): ...: x, y, z = i[0], i[1], i[2] ...: return [ ...: x + 2 * y + 3 * z - 6, ...: 5 * (x ** 2) + 6 * (y ** 2) + 7 * (z ** 2) - 18, ...: 9 * (x ** 3) + 10 * (y ** 3) + 11 * (z ** 3) - 30 ...: ] ...: ...: r = fsolve(func,[0, 0, 0]) ...: print r ...: Out[3]: [ 1.00000001 0.99999998 1.00000001]
물론 SciPy를 사용하여 선형 방정식을 풀 수도 있습니다. 이는 scipy.optimize.fsolve가 본질적으로 결과를 근사화하는 최소 제곱 방법이기 때문입니다.
SymPy는 방정식 시스템을 해결합니다
, 하나를 풀면:
x + 2 * (x ** 2) + 3 * (x ** 3) - 6 = 0
는 직접적으로:
In [4]: from sympy import * ...: x = symbols('x') ...: solve(x + 2 * (x ** 2) + 3 * (x ** 3) - 6, x) Out[4]: [1, -5/6 - sqrt(47)*I/6, -5/6 + sqrt(47)*I/6]
위 내용은 파이썬에서 방정식을 푸는 세 가지 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











PHP와 Python은 고유 한 장점과 단점이 있으며 선택은 프로젝트 요구와 개인 선호도에 달려 있습니다. 1.PHP는 대규모 웹 애플리케이션의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 데이터 과학 및 기계 학습 분야를 지배합니다.

Python과 JavaScript는 커뮤니티, 라이브러리 및 리소스 측면에서 고유 한 장점과 단점이 있습니다. 1) Python 커뮤니티는 친절하고 초보자에게 적합하지만 프론트 엔드 개발 리소스는 JavaScript만큼 풍부하지 않습니다. 2) Python은 데이터 과학 및 기계 학습 라이브러리에서 강력하며 JavaScript는 프론트 엔드 개발 라이브러리 및 프레임 워크에서 더 좋습니다. 3) 둘 다 풍부한 학습 리소스를 가지고 있지만 Python은 공식 문서로 시작하는 데 적합하지만 JavaScript는 MDNWebDocs에서 더 좋습니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Docker는 Linux 커널 기능을 사용하여 효율적이고 고립 된 응용 프로그램 실행 환경을 제공합니다. 작동 원리는 다음과 같습니다. 1. 거울은 읽기 전용 템플릿으로 사용되며, 여기에는 응용 프로그램을 실행하는 데 필요한 모든 것을 포함합니다. 2. Union 파일 시스템 (Unionfs)은 여러 파일 시스템을 스택하고 차이점 만 저장하고 공간을 절약하고 속도를 높입니다. 3. 데몬은 거울과 컨테이너를 관리하고 클라이언트는 상호 작용을 위해 사용합니다. 4. 네임 스페이스 및 CGroup은 컨테이너 격리 및 자원 제한을 구현합니다. 5. 다중 네트워크 모드는 컨테이너 상호 연결을 지원합니다. 이러한 핵심 개념을 이해 함으로써만 Docker를 더 잘 활용할 수 있습니다.

CentOS 시스템에 Pytorch를 설치할 때는 적절한 버전을 신중하게 선택하고 다음 주요 요소를 고려해야합니다. 1. 시스템 환경 호환성 : 운영 체제 : CentOS7 이상을 사용하는 것이 좋습니다. Cuda 및 Cudnn : Pytorch 버전 및 Cuda 버전은 밀접하게 관련되어 있습니다. 예를 들어, pytorch1.9.0은 cuda11.1을 필요로하고 Pytorch2.0.1은 cuda11.3을 필요로합니다. CUDNN 버전도 CUDA 버전과 일치해야합니다. Pytorch 버전을 선택하기 전에 호환 CUDA 및 CUDNN 버전이 설치되었는지 확인하십시오. 파이썬 버전 : Pytorch 공식 지점

vs 코드에서는 다음 단계를 통해 터미널에서 프로그램을 실행할 수 있습니다. 코드를 준비하고 통합 터미널을 열어 코드 디렉토리가 터미널 작업 디렉토리와 일치하는지 확인하십시오. 프로그래밍 언어 (예 : Python의 Python Your_file_name.py)에 따라 실행 명령을 선택하여 성공적으로 실행되는지 여부를 확인하고 오류를 해결하십시오. 디버거를 사용하여 디버깅 효율을 향상시킵니다.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

VS 코드 확장은 악의적 인 코드 숨기기, 취약성 악용 및 합법적 인 확장으로 자위하는 등 악성 위험을 초래합니다. 악의적 인 확장을 식별하는 방법에는 게시자 확인, 주석 읽기, 코드 확인 및주의해서 설치가 포함됩니다. 보안 조치에는 보안 인식, 좋은 습관, 정기적 인 업데이트 및 바이러스 백신 소프트웨어도 포함됩니다.

Centos Nginx를 설치하려면 다음 단계를 수행해야합니다. 개발 도구, PCRE-DEVEL 및 OPENSSL-DEVEL과 같은 종속성 설치. nginx 소스 코드 패키지를 다운로드하고 압축을 풀고 컴파일하고 설치하고 설치 경로를/usr/local/nginx로 지정하십시오. nginx 사용자 및 사용자 그룹을 만들고 권한을 설정하십시오. 구성 파일 nginx.conf를 수정하고 청취 포트 및 도메인 이름/IP 주소를 구성하십시오. Nginx 서비스를 시작하십시오. 종속성 문제, 포트 충돌 및 구성 파일 오류와 같은 일반적인 오류는주의를 기울여야합니다. 캐시를 켜고 작업자 프로세스 수 조정과 같은 특정 상황에 따라 성능 최적화를 조정해야합니다.
