목차
Background
테스트 데이터 생성 방법
기본 테이블 구조 생성
방법 1: 저장 프로시저 및 메모리 테이블 사용
데이터 베이스 MySQL 튜토리얼 MySQL은 수천만 개의 테스트 데이터를 빠르게 생성합니다.

MySQL은 수천만 개의 테스트 데이터를 빠르게 생성합니다.

Jun 18, 2019 pm 02:42 PM
mysql

MySQL은 수천만 개의 테스트 데이터를 빠르게 생성합니다.

이 기사의 데이터 용량은 100W입니다. 수천만 개를 원한다면 양을 늘리면 됩니다. 단, rand() 또는 uuid()를 대량으로 사용하면 성능이 저하됩니다

Background

문의 운영 성능 테스트나 SQL 최적화를 수행할 때 실제 온라인 환경을 시뮬레이션하기 위한 테스트를 위해 오프라인 환경에서 대량의 기본 데이터를 구축해야 하는 경우가 많습니다.

말도 안 되는 소리, 온라인 테스트를 못하게 하면 DBA에게 해킹당해 죽는다

테스트 데이터 생성 방법

    1. 编写代码,通过代码批量插库(本人使用过,步骤太繁琐,性能不高,不推荐)
    2. 编写存储过程和函数执行(本文实现方式1)
    3. 临时数据表方式执行 (本文实现方式2,强烈推荐该方式,非常简单,数据插入快速,100W,只需几秒)
    4. 一行一行手动插入,(WTF,去死吧)
로그인 후 복사

기본 테이블 구조 생성

어떤 방법을 사용해도 나는 거기에 삽입하고 싶어요 테이블은 항상 생성되어야 합니다

CREATE TABLE `t_user` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `c_user_id` varchar(36) NOT NULL DEFAULT '',
  `c_name` varchar(22) NOT NULL DEFAULT '',
  `c_province_id` int(11) NOT NULL,
  `c_city_id` int(11) NOT NULL,
  `create_time` datetime NOT NULL,
  PRIMARY KEY (`id`),
  KEY `idx_user_id` (`c_user_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
로그인 후 복사

방법 1: 저장 프로시저 및 메모리 테이블 사용

  • 메모리 테이블 생성

利用 MySQL 内存表插入速度快的特点,我们先利用函数和存储过程在内存表中生成数据,然后再从内存表插入普通表中

CREATE TABLE `t_user_memory` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `c_user_id` varchar(36) NOT NULL DEFAULT '',
  `c_name` varchar(22) NOT NULL DEFAULT '',
  `c_province_id` int(11) NOT NULL,
  `c_city_id` int(11) NOT NULL,
  `create_time` datetime NOT NULL,
  PRIMARY KEY (`id`),
  KEY `idx_user_id` (`c_user_id`)
) ENGINE=MEMORY DEFAULT CHARSET=utf8mb4;
로그인 후 복사
  • 함수 및 저장 프로시저 생성

# 创建随机字符串和随机时间的函数
mysql> delimiter $$
mysql> CREATE DEFINER=`root`@`%` FUNCTION `randStr`(n INT) RETURNS varchar(255) CHARSET utf8mb4
    ->     DETERMINISTIC
    -> BEGIN
    ->     DECLARE chars_str varchar(100) DEFAULT 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789';
    ->     DECLARE return_str varchar(255) DEFAULT '' ;
    ->     DECLARE i INT DEFAULT 0;
    ->     WHILE i          SET return_str = concat(return_str, substring(chars_str, FLOOR(1 + RAND() * 62), 1));
    ->         SET i = i + 1;
    ->     END WHILE;
    ->     RETURN return_str;
    -> END$$
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE DEFINER=`root`@`%` FUNCTION `randDataTime`(sd DATETIME,ed DATETIME) RETURNS datetime
    ->     DETERMINISTIC
    -> BEGIN
    ->     DECLARE sub INT DEFAULT 0;
    ->     DECLARE ret DATETIME;
    ->     SET sub = ABS(UNIX_TIMESTAMP(ed)-UNIX_TIMESTAMP(sd));
    ->     SET ret = DATE_ADD(sd,INTERVAL FLOOR(1+RAND()*(sub-1)) SECOND);
    ->     RETURN ret;
    -> END $$

mysql> delimiter ;

# 创建插入数据存储过程
mysql> CREATE DEFINER=`root`@`%` PROCEDURE `add_t_user_memory`(IN n int)
    -> BEGIN
    ->     DECLARE i INT DEFAULT 1;
    ->     WHILE (i          INSERT INTO t_user_memory (c_user_id, c_name, c_province_id,c_city_id, create_time) VALUES (uuid(), randStr(20), FLOOR(RAND() * 1000), FLOOR(RAND() * 100), NOW());
    ->         SET i = i + 1;
    ->     END WHILE;
    -> END
    -> $$
Query OK, 0 rows affected (0.01 sec)
로그인 후 복사
  • 저장 프로시저 호출

mysql> CALL add_t_user_memory(1000000);
ERROR 1114 (HY000): The table 't_user_memory' is full
出现内存已满时,修改 max_heap_table_size 参数的大小,我使用64M内存,插入了22W数据,看情况改,不过这个值不要太大,默认32M或者64M就好,生产环境不要乱尝试
로그인 후 복사
  • 메모리 테이블에서 일반 테이블에 삽입

mysql> INSERT INTO t_user SELECT * FROM t_user_memory;
Query OK, 218953 rows affected (1.70 sec)
Records: 218953  Duplicates: 0  Warnings: 0
로그인 후 복사
로그인 후 복사
방법 2: 임시 테이블을 사용하여

  • 임시 데이터 테이블 생성 tmp_table

mysql> INSERT INTO t_user SELECT * FROM t_user_memory;
Query OK, 218953 rows affected (1.70 sec)
Records: 218953  Duplicates: 0  Warnings: 0
로그인 후 복사
로그인 후 복사
  • 사용 파이썬이나 배쉬 100w 기록 데이터 파일 생성 (파이썬은 즉시 생성됩니다)

python(推荐): python -c "for i in range(1, 1+1000000): print(i)" > base.txt
로그인 후 복사
  • 임시 테이블 tmp_table로 데이터 가져오기

mysql> load data infile '/Users/LJTjintao/temp/base.txt' replace into table tmp_table;
Query OK, 1000000 rows affected (2.55 sec)
Records: 1000000  Deleted: 0  Skipped: 0  Warnings: 0

千万级数据 20秒插入完成
로그인 후 복사
참고: mysql은 데이터를 가져올 때 오류가 보고될 수 있습니다. 기본적으로 secure_file_priv가 활성화되어 있습니다(이 매개변수는 LOAD DATA, SELECT... INTO OUTFILE 문 및 LOAD_FILE() 함수 실행과 같은 데이터 가져오기 및 내보내기 작업의 효과를 제한하는 데 사용됩니다. 이러한 작업을 수행하려면 사용자에게 FILE 권한이 있어야 합니다. )

해결책: mysql 구성 파일(my.ini 또는 my.conf)에 secure_file_priv = /Users/LJTjintao/temp/`를 추가한 다음 mysql을 다시 시작하여 문제를 해결하세요

MySQL은 수천만 개의 테스트 데이터를 빠르게 생성합니다.MySQL은 수천만 개의 테스트 데이터를 빠르게 생성합니다.

  • 임시 테이블을 기본 데이터로 사용하여 t_user에 데이터 삽입, 100W 데이터 삽입에 10.37초 소요

mysql> INSERT INTO t_user
    ->   SELECT
    ->     id,
    ->     uuid(),
    ->     CONCAT('userNickName', id),
    ->     FLOOR(Rand() * 1000),
    ->     FLOOR(Rand() * 100),
    ->     NOW()
    ->   FROM
    ->     tmp_table;
Query OK, 1000000 rows affected (10.37 sec)
Records: 1000000  Duplicates: 0  Warnings: 0
로그인 후 복사
  • 삽입된 데이터의 생성 시간이 더 무작위로 생성되도록 생성 시간 필드 업데이트

UPDATE t_user SET create_time=date_add(create_time, interval FLOOR(1 + (RAND() * 7)) year);

Query OK, 1000000 rows affected (5.21 sec)
Rows matched: 1000000  Changed: 1000000  Warnings: 0

mysql> UPDATE t_user SET create_time=date_add(create_time, interval FLOOR(1 + (RAND() * 7)) year);


Query OK, 1000000 rows affected (4.77 sec)
Rows matched: 1000000  Changed: 1000000  Warnings: 0
로그인 후 복사
mysql> select * from t_user limit 30;
+----+--------------------------------------+----------------+---------------+-----------+---------------------+
| id | c_user_id                            | c_name         | c_province_id | c_city_id | create_time         |
+----+--------------------------------------+----------------+---------------+-----------+---------------------+
|  1 | bf5e227a-7b84-11e9-9d6e-751d319e85c2 | userNickName1  |            84 |        64 | 2015-11-13 21:13:19 |
|  2 | bf5e26f8-7b84-11e9-9d6e-751d319e85c2 | userNickName2  |           967 |        90 | 2019-11-13 20:19:33 |
|  3 | bf5e2810-7b84-11e9-9d6e-751d319e85c2 | userNickName3  |           623 |        40 | 2014-11-13 20:57:46 |
|  4 | bf5e2888-7b84-11e9-9d6e-751d319e85c2 | userNickName4  |           140 |        49 | 2016-11-13 20:50:11 |
|  5 | bf5e28f6-7b84-11e9-9d6e-751d319e85c2 | userNickName5  |            47 |        75 | 2016-11-13 21:17:38 |
|  6 | bf5e295a-7b84-11e9-9d6e-751d319e85c2 | userNickName6  |           642 |        94 | 2015-11-13 20:57:36 |
|  7 | bf5e29be-7b84-11e9-9d6e-751d319e85c2 | userNickName7  |           780 |         7 | 2015-11-13 20:55:07 |
|  8 | bf5e2a4a-7b84-11e9-9d6e-751d319e85c2 | userNickName8  |            39 |        96 | 2017-11-13 21:42:46 |
|  9 | bf5e2b58-7b84-11e9-9d6e-751d319e85c2 | userNickName9  |           731 |        74 | 2015-11-13 22:48:30 |
| 10 | bf5e2bb2-7b84-11e9-9d6e-751d319e85c2 | userNickName10 |           534 |        43 | 2016-11-13 22:54:10 |
| 11 | bf5e2c16-7b84-11e9-9d6e-751d319e85c2 | userNickName11 |           572 |        55 | 2018-11-13 20:05:19 |
| 12 | bf5e2c70-7b84-11e9-9d6e-751d319e85c2 | userNickName12 |            71 |        68 | 2014-11-13 20:44:04 |
| 13 | bf5e2cca-7b84-11e9-9d6e-751d319e85c2 | userNickName13 |           204 |        97 | 2019-11-13 20:24:23 |
| 14 | bf5e2d2e-7b84-11e9-9d6e-751d319e85c2 | userNickName14 |           249 |        32 | 2019-11-13 22:49:43 |
| 15 | bf5e2d88-7b84-11e9-9d6e-751d319e85c2 | userNickName15 |           900 |        51 | 2019-11-13 20:55:26 |
| 16 | bf5e2dec-7b84-11e9-9d6e-751d319e85c2 | userNickName16 |           854 |        74 | 2018-11-13 22:07:58 |
| 17 | bf5e2e50-7b84-11e9-9d6e-751d319e85c2 | userNickName17 |           136 |        46 | 2013-11-13 21:53:34 |
| 18 | bf5e2eb4-7b84-11e9-9d6e-751d319e85c2 | userNickName18 |           897 |        10 | 2018-11-13 20:03:55 |
| 19 | bf5e2f0e-7b84-11e9-9d6e-751d319e85c2 | userNickName19 |           829 |        83 | 2013-11-13 20:38:54 |
| 20 | bf5e2f68-7b84-11e9-9d6e-751d319e85c2 | userNickName20 |           683 |        91 | 2019-11-13 20:02:42 |
| 21 | bf5e2fcc-7b84-11e9-9d6e-751d319e85c2 | userNickName21 |           511 |        81 | 2013-11-13 21:16:48 |
| 22 | bf5e3026-7b84-11e9-9d6e-751d319e85c2 | userNickName22 |           562 |        35 | 2019-11-13 20:15:52 |
| 23 | bf5e3080-7b84-11e9-9d6e-751d319e85c2 | userNickName23 |            91 |        39 | 2016-11-13 20:28:59 |
| 24 | bf5e30da-7b84-11e9-9d6e-751d319e85c2 | userNickName24 |           677 |        21 | 2016-11-13 21:37:15 |
| 25 | bf5e3134-7b84-11e9-9d6e-751d319e85c2 | userNickName25 |            50 |        60 | 2018-11-13 20:39:20 |
| 26 | bf5e318e-7b84-11e9-9d6e-751d319e85c2 | userNickName26 |           856 |        47 | 2018-11-13 21:24:53 |
| 27 | bf5e31e8-7b84-11e9-9d6e-751d319e85c2 | userNickName27 |           816 |        65 | 2014-11-13 22:06:26 |
| 28 | bf5e324c-7b84-11e9-9d6e-751d319e85c2 | userNickName28 |           806 |         7 | 2019-11-13 20:17:30 |
| 29 | bf5e32a6-7b84-11e9-9d6e-751d319e85c2 | userNickName29 |           973 |        63 | 2014-11-13 21:08:09 |
| 30 | bf5e3300-7b84-11e9-9d6e-751d319e85c2 | userNickName30 |           237 |        29 | 2018-11-13 21:48:17 |
+----+--------------------------------------+----------------+---------------+-----------+---------------------+
30 rows in set (0.01 sec)
로그인 후 복사

더 많은 MySQL 관련 기술 기사를 보려면 MySQL Tutorial 칼럼을 방문하세요!

위 내용은 MySQL은 수천만 개의 테스트 데이터를 빠르게 생성합니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 채팅 명령 및 사용 방법
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

MySQL : 쉽게 학습하기위한 간단한 개념 MySQL : 쉽게 학습하기위한 간단한 개념 Apr 10, 2025 am 09:29 AM

MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템입니다. 1) 데이터베이스 및 테이블 작성 : CreateAbase 및 CreateTable 명령을 사용하십시오. 2) 기본 작업 : 삽입, 업데이트, 삭제 및 선택. 3) 고급 운영 : 가입, 하위 쿼리 및 거래 처리. 4) 디버깅 기술 : 확인, 데이터 유형 및 권한을 확인하십시오. 5) 최적화 제안 : 인덱스 사용, 선택을 피하고 거래를 사용하십시오.

phpmyadmin을 여는 방법 phpmyadmin을 여는 방법 Apr 10, 2025 pm 10:51 PM

다음 단계를 통해 phpmyadmin을 열 수 있습니다. 1. 웹 사이트 제어판에 로그인; 2. phpmyadmin 아이콘을 찾고 클릭하십시오. 3. MySQL 자격 증명을 입력하십시오. 4. "로그인"을 클릭하십시오.

Navicat Premium을 만드는 방법 Navicat Premium을 만드는 방법 Apr 09, 2025 am 07:09 AM

Navicat Premium을 사용하여 데이터베이스 생성 : 데이터베이스 서버에 연결하고 연결 매개 변수를 입력하십시오. 서버를 마우스 오른쪽 버튼으로 클릭하고 데이터베이스 생성을 선택하십시오. 새 데이터베이스의 이름과 지정된 문자 세트 및 Collation의 이름을 입력하십시오. 새 데이터베이스에 연결하고 객체 브라우저에서 테이블을 만듭니다. 테이블을 마우스 오른쪽 버튼으로 클릭하고 데이터 삽입을 선택하여 데이터를 삽입하십시오.

Navicat에서 MySQL에 새로운 연결을 만드는 방법 Navicat에서 MySQL에 새로운 연결을 만드는 방법 Apr 09, 2025 am 07:21 AM

응용 프로그램을 열고 새로운 연결 (Ctrl n)을 선택하여 Navicat에서 새로운 MySQL 연결을 만들 수 있습니다. "MySQL"을 연결 유형으로 선택하십시오. 호스트 이름/IP 주소, 포트, 사용자 이름 및 비밀번호를 입력하십시오. (선택 사항) 고급 옵션을 구성합니다. 연결을 저장하고 연결 이름을 입력하십시오.

MySQL 및 SQL : 개발자를위한 필수 기술 MySQL 및 SQL : 개발자를위한 필수 기술 Apr 10, 2025 am 09:30 AM

MySQL 및 SQL은 개발자에게 필수적인 기술입니다. 1.MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템이며 SQL은 데이터베이스를 관리하고 작동하는 데 사용되는 표준 언어입니다. 2.MYSQL은 효율적인 데이터 저장 및 검색 기능을 통해 여러 스토리지 엔진을 지원하며 SQL은 간단한 문을 통해 복잡한 데이터 작업을 완료합니다. 3. 사용의 예에는 기본 쿼리 및 조건 별 필터링 및 정렬과 같은 고급 쿼리가 포함됩니다. 4. 일반적인 오류에는 구문 오류 및 성능 문제가 포함되며 SQL 문을 확인하고 설명 명령을 사용하여 최적화 할 수 있습니다. 5. 성능 최적화 기술에는 인덱스 사용, 전체 테이블 스캔 피하기, 조인 작업 최적화 및 코드 가독성 향상이 포함됩니다.

단일 스레드 레 디스를 사용하는 방법 단일 스레드 레 디스를 사용하는 방법 Apr 10, 2025 pm 07:12 PM

Redis는 단일 스레드 아키텍처를 사용하여 고성능, 단순성 및 일관성을 제공합니다. 동시성을 향상시키기 위해 I/O 멀티플렉싱, 이벤트 루프, 비 블로킹 I/O 및 공유 메모리를 사용하지만 동시성 제한 제한, 단일 고장 지점 및 쓰기 집약적 인 워크로드에 부적합한 제한이 있습니다.

MySQL : 세계에서 가장 인기있는 데이터베이스 소개 MySQL : 세계에서 가장 인기있는 데이터베이스 소개 Apr 12, 2025 am 12:18 AM

MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템으로, 주로 데이터를 신속하고 안정적으로 저장하고 검색하는 데 사용됩니다. 작업 원칙에는 클라이언트 요청, 쿼리 해상도, 쿼리 실행 및 반환 결과가 포함됩니다. 사용의 예로는 테이블 작성, 데이터 삽입 및 쿼리 및 조인 작업과 같은 고급 기능이 포함됩니다. 일반적인 오류에는 SQL 구문, 데이터 유형 및 권한이 포함되며 최적화 제안에는 인덱스 사용, 최적화 된 쿼리 및 테이블 분할이 포함됩니다.

SQL이 행을 삭제 한 후 데이터를 복구하는 방법 SQL이 행을 삭제 한 후 데이터를 복구하는 방법 Apr 09, 2025 pm 12:21 PM

백업 또는 트랜잭션 롤백 메커니즘이없는 한 데이터베이스에서 직접 삭제 된 행 복구는 일반적으로 불가능합니다. 키 포인트 : 거래 롤백 : 트랜잭션이 데이터를 복구하기 전에 롤백을 실행합니다. 백업 : 데이터베이스의 일반 백업을 사용하여 데이터를 신속하게 복원 할 수 있습니다. 데이터베이스 스냅 샷 : 데이터베이스의 읽기 전용 사본을 작성하고 데이터를 실수로 삭제 한 후 데이터를 복원 할 수 있습니다. 주의해서 삭제 명령문을 사용하십시오. 실수로 데이터를 삭제하지 않도록 조건을주의 깊게 점검하십시오. WHERE 절을 사용하십시오 : 삭제할 데이터를 명시 적으로 지정하십시오. 테스트 환경 사용 : 삭제 작업을 수행하기 전에 테스트하십시오.

See all articles