파이썬에서 csv 파일을 읽는 방법
Python은 csv 파일을 읽고 씁니다
머리말#🎜 🎜 #
쉼표로 구분된 값 (CSV, 구분 문자가 쉼표가 아닐 수도 있기 때문에 문자로 구분된 값이라고도 함), 해당 파일은 표 형식 데이터(숫자)를 저장합니다. ) 일반 텍스트 및 텍스트로). 일반 텍스트는 파일이 일련의 문자이며 이진수처럼 해석되어야 하는 데이터를 포함하지 않음을 의미합니다. CSV 파일은 일종의 개행 문자로 구분된 여러 개의 레코드로 구성됩니다. 각 레코드는 필드로 구성되며 필드 사이의 구분 기호는 다른 문자 또는 문자열(가장 일반적으로 쉼표 또는 탭)입니다. 일반적으로 모든 레코드는 정확히 동일한 필드 순서를 가지며, 숫자인 경우 수동으로 숫자로 변환해야 합니다. 행 단위로 데이터 읽기
The 열은 반자 쉼표 또는 탭으로 구분됩니다. 일반적으로 반자 쉼표#🎜 🎜# 일반적으로 각 줄의 시작 부분에는 공백이 없습니다. 첫 번째 줄은 속성 열 사이에 공백이 없습니다. 간격으로 구분 기호가 있는 데이터 열에는 행 사이에 빈 줄이 없습니다.
줄 사이에 빈 줄이 없는 것이 매우 중요합니다. 데이터 세트에서 빈 줄이 있거나 행 끝에 공백이 있으면 일반적으로 읽을 때 오류가 발생합니다. 데이터가 [목록 인덱스가 범위를 벗어났습니다.] 오류가 발생합니다. 추신: 저는 이 오류에 여러 번 속았습니다!Python I/O를 사용하여 CSV 파일 쓰기 및 읽기
Python I/O를 사용하여 CSV 파일 쓰기#🎜 🎜#
다음은 작성자 소스에서 "birthweight.dat" 저출생체중 dat 파일을 다운로드 받아 가공하여 csv 파일로 저장하는 코드입니다.
import csv import os import numpy as np import random import requests # name of data file # 数据集名称 birth_weight_file = 'birth_weight.csv' # download data and create data file if file does not exist in current directory # 如果当前文件夹下没有birth_weight.csv数据集则下载dat文件并生成csv文件 if not os.path.exists(birth_weight_file): birthdata_url = 'https://github.com/nfmcclure/tensorflow_cookbook/raw/master/01_Introduction/07_Working_with_Data_Sources/birthweight_data/birthweight.dat' birth_file = requests.get(birthdata_url) birth_data = birth_file.text.split('\r\n') # split分割函数,以一行作为分割函数,windows中换行符号为'\r\n',每一行后面都有一个'\r\n'符号。 birth_header = birth_data[0].split('\t') # 每一列的标题,标在第一行,即是birth_data的第一个数据。并使用制表符作为划分。 birth_data = [[float(x) for x in y.split('\t') if len(x) >= 1] for y in birth_data[1:] if len(y) >= 1] print(np.array(birth_data).shape) # (189, 9) # 此为list数据形式不是numpy数组不能使用np,shape函数,但是我们可以使用np.array函数将list对象转化为numpy数组后使用shape属性进行查看。 with open(birth_weight_file, "w", newline='') as f: # with open(birth_weight_file, "w") as f: writer = csv.writer(f) writer.writerows([birth_header]) writer.writerows(birth_data) f.close()
일반적인 실수 목록 색인이 범위를 벗어났습니다
우리가 해야 할 핵심 사항 f: 이 명령문은 open(birth_weight_file, "w", newline='')과 같습니다. csv 파일에 쓰는 것을 나타냅니다. newline='' 매개변수가 추가되지 않으면 공백을 개행 문자로 사용하는 것을 의미합니다. 대신 with open(birth_weight_file, "w")를 f: 문으로 사용하세요. 생성된 테이블에 빈 행이 나타납니다.Python I/O를 사용하여 csv 파일 읽기
Python I/O 방법을 사용하여 읽을 때 새 목록을 만듭니다. 데이터는 행부터 열 순서로 빈 List 객체에 저장됩니다(C 언어의 2차원 배열과 유사). 이를 numpy 배열로 변환해야 하는 경우 np.array를 사용할 수도 있습니다. (목록 이름) 개체 간을 변환합니다.birth_data = [] with open(birth_weight_file) as csvfile: csv_reader = csv.reader(csvfile) # 使用csv.reader读取csvfile中的文件 birth_header = next(csv_reader) # 读取第一行每一列的标题 for row in csv_reader: # 将csv 文件中的数据保存到birth_data中 birth_data.append(row) birth_data = [[float(x) for x in row] for row in birth_data] # 将数据从string形式转换为float形式 birth_data = np.array(birth_data) # 将list数组转化成array数组便于查看数据结构 birth_header = np.array(birth_header) print(birth_data.shape) # 利用.shape查看结构。 print(birth_header.shape) # # (189, 9) # (9,)

import pandas as pd csv_data = pd.read_csv('birth_weight.csv') # 读取训练数据 print(csv_data.shape) # (189, 9) N = 5 csv_batch_data = csv_data.tail(N) # 取后5条数据 print(csv_batch_data.shape) # (5, 9) train_batch_data = csv_batch_data[list(range(3, 6))] # 取这20条数据的3到5列值(索引从0开始) print(train_batch_data) # RACE SMOKE PTL # 184 0.0 0.0 0.0 # 185 0.0 0.0 1.0 # 186 0.0 1.0 0.0 # 187 0.0 0.0 0.0 # 188 0.0 0.0 1.0
Tensorflow를 사용하여 CSV 파일 읽기
#🎜 🎜# 저는 다양한 유형의 데이터를 처리하기 위해 주로 Tensorflow를 사용하므로, Tensorflow를 사용하여 데이터를 읽는 것에 대해서는 길게 설명하지 않겠습니다. 아래에 코드를 붙여넣겠습니다.'''使用Tensorflow读取csv数据''' filename = 'birth_weight.csv' file_queue = tf.train.string_input_producer([filename]) # 设置文件名队列,这样做能够批量读取文件夹中的文件 reader = tf.TextLineReader(skip_header_lines=1) # 使用tensorflow文本行阅读器,并且设置忽略第一行 key, value = reader.read(file_queue) defaults = [[0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.]] # 设置列属性的数据格式 LOW, AGE, LWT, RACE, SMOKE, PTL, HT, UI, BWT = tf.decode_csv(value, defaults) # 将读取的数据编码为我们设置的默认格式 vertor_example = tf.stack([AGE, LWT, RACE, SMOKE, PTL, HT, UI]) # 读取得到的中间7列属性为训练特征 vertor_label = tf.stack([BWT]) # 读取得到的BWT值表示训练标签 # 用于给取出的数据添加上batch_size维度,以批处理的方式读出数据。可以设置批处理数据大小,是否重复读取数据,容量大小,队列末尾大小,读取线程等属性。 example_batch, label_batch = tf.train.shuffle_batch([vertor_example, vertor_label], batch_size=10, capacity=100, min_after_dequeue=10) # 初始化Session with tf.Session() as sess: coord = tf.train.Coordinator() # 线程管理器 threads = tf.train.start_queue_runners(coord=coord) print(sess.run(tf.shape(example_batch))) # [10 7] print(sess.run(tf.shape(label_batch))) # [10 1] print(sess.run(example_batch)[3]) # [ 19. 91. 0. 1. 1. 0. 1.] coord.request_stop() coord.join(threads) ''' 对于使用所有Tensorflow的I/O操作来说开启和关闭线程管理器都是必要的操作 with tf.Session() as sess: coord = tf.train.Coordinator() # 线程管理器 threads = tf.train.start_queue_runners(coord=coord) # Your code here~ coord.request_stop() coord.join(threads) '''
위 내용은 파이썬에서 csv 파일을 읽는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











PHP는 주로 절차 적 프로그래밍이지만 객체 지향 프로그래밍 (OOP)도 지원합니다. Python은 OOP, 기능 및 절차 프로그래밍을 포함한 다양한 패러다임을 지원합니다. PHP는 웹 개발에 적합하며 Python은 데이터 분석 및 기계 학습과 같은 다양한 응용 프로그램에 적합합니다.

PHP는 웹 개발 및 빠른 프로토 타이핑에 적합하며 Python은 데이터 과학 및 기계 학습에 적합합니다. 1.PHP는 간단한 구문과 함께 동적 웹 개발에 사용되며 빠른 개발에 적합합니다. 2. Python은 간결한 구문을 가지고 있으며 여러 분야에 적합하며 강력한 라이브러리 생태계가 있습니다.

Python은 부드러운 학습 곡선과 간결한 구문으로 초보자에게 더 적합합니다. JavaScript는 가파른 학습 곡선과 유연한 구문으로 프론트 엔드 개발에 적합합니다. 1. Python Syntax는 직관적이며 데이터 과학 및 백엔드 개발에 적합합니다. 2. JavaScript는 유연하며 프론트 엔드 및 서버 측 프로그래밍에서 널리 사용됩니다.

PHP는 1994 년에 시작되었으며 Rasmuslerdorf에 의해 개발되었습니다. 원래 웹 사이트 방문자를 추적하는 데 사용되었으며 점차 서버 측 스크립팅 언어로 진화했으며 웹 개발에 널리 사용되었습니다. Python은 1980 년대 후반 Guidovan Rossum에 의해 개발되었으며 1991 년에 처음 출시되었습니다. 코드 가독성과 단순성을 강조하며 과학 컴퓨팅, 데이터 분석 및 기타 분야에 적합합니다.

VS 코드는 Windows 8에서 실행될 수 있지만 경험은 크지 않을 수 있습니다. 먼저 시스템이 최신 패치로 업데이트되었는지 확인한 다음 시스템 아키텍처와 일치하는 VS 코드 설치 패키지를 다운로드하여 프롬프트대로 설치하십시오. 설치 후 일부 확장은 Windows 8과 호환되지 않을 수 있으며 대체 확장을 찾거나 가상 시스템에서 새로운 Windows 시스템을 사용해야합니다. 필요한 연장을 설치하여 제대로 작동하는지 확인하십시오. Windows 8에서는 VS 코드가 가능하지만 더 나은 개발 경험과 보안을 위해 새로운 Windows 시스템으로 업그레이드하는 것이 좋습니다.

VS 코드는 파이썬을 작성하는 데 사용될 수 있으며 파이썬 애플리케이션을 개발하기에 이상적인 도구가되는 많은 기능을 제공합니다. 사용자는 다음을 수행 할 수 있습니다. Python 확장 기능을 설치하여 코드 완료, 구문 강조 및 디버깅과 같은 기능을 얻습니다. 디버거를 사용하여 코드를 단계별로 추적하고 오류를 찾아 수정하십시오. 버전 제어를 위해 git을 통합합니다. 코드 서식 도구를 사용하여 코드 일관성을 유지하십시오. 라인 도구를 사용하여 잠재적 인 문제를 미리 발견하십시오.

vs 코드에서는 다음 단계를 통해 터미널에서 프로그램을 실행할 수 있습니다. 코드를 준비하고 통합 터미널을 열어 코드 디렉토리가 터미널 작업 디렉토리와 일치하는지 확인하십시오. 프로그래밍 언어 (예 : Python의 Python Your_file_name.py)에 따라 실행 명령을 선택하여 성공적으로 실행되는지 여부를 확인하고 오류를 해결하십시오. 디버거를 사용하여 디버깅 효율을 향상시킵니다.

VS 코드 확장은 악의적 인 코드 숨기기, 취약성 악용 및 합법적 인 확장으로 자위하는 등 악성 위험을 초래합니다. 악의적 인 확장을 식별하는 방법에는 게시자 확인, 주석 읽기, 코드 확인 및주의해서 설치가 포함됩니다. 보안 조치에는 보안 인식, 좋은 습관, 정기적 인 업데이트 및 바이러스 백신 소프트웨어도 포함됩니다.
