이 기사에서 말하는 내용은 redis가 최대 메모리를 설정한 후 캐시에 설정된 데이터의 크기가 일정 비율을 초과한다는 것입니다. 구현된 제거 전략은 만료된 키를 삭제하는 전략이 아닙니다. 매우 비슷합니다. (권장: redis 비디오 튜토리얼)
redis에서는 redis.conf에서 maxmemory 값을 구성하여 사용자가 최대 메모리 크기를 설정하고 메모리 제거 기능을 활성화할 수 있는데, 이는 메모리가 제한되어 있을 때 매우 유용합니다.
최대 메모리 크기를 설정하면 redis가 외부 세계에 안정적인 서비스를 제공할 수 있습니다.
Redis 메모리 데이터 세트의 크기가 특정 크기로 증가하면 데이터 제거 전략이 구현됩니다. Redis는 maxmemory-policy 설정 전략을 통해 6가지 데이터 제거 전략을 제공합니다.
휘발성-lru: 제거할 만료 시간이 설정된 데이터 세트(server.db[i].expires)에서 가장 최근에 사용된 데이터를 선택합니다.
휘발성- ttl : 만료 시간이 설정된 데이터 세트(server.db[i].expires)에서 만료될 데이터를 선택하여 제거합니다.
휘발성-random: 만료 시간이 설정된 데이터 세트(server.db[ i].expires) )
allkeys-lru: 데이터 세트(server.db[i].dict)에서 가장 최근에 사용된 데이터를 선택하여 제거합니다.
allkeys-random: 데이터 세트(server.db[i)에서 ].dict). dict) 모든 데이터 제거
no-enviction(eviction): 데이터 제거가 금지됩니다.
redis가 키-값 쌍을 제거하기로 결정한 후 데이터를 삭제하고 데이터 변경 메시지를 게시합니다. 로컬(AOF 지속성) 및 슬레이브(마스터-슬레이브 연결)
LRU 데이터 제거 메커니즘
서버 구성에 lru 카운터 server.lrulock을 저장하며 정기적으로 업데이트됩니다(redis 타이머 프로그램 serverCorn()) . server.lrulock의 값은 unixtime을 기준으로 계산됩니다.
또한 struct redisObject에서 각 redis 객체가 해당 lru를 설정한다는 것을 알 수 있습니다. 데이터에 액세스할 때마다 redisObject.lru가 업데이트되는 것이 가능합니다.
LRU 데이터 제거 메커니즘은 다음과 같습니다. 데이터 세트에서 여러 키-값 쌍을 무작위로 선택하고 그중 LRU가 가장 큰 키-값 쌍을 제거합니다. 따라서 Redis는 모든 데이터 세트에서 가장 최근에 사용된(LRU) 키-값 쌍을 얻는 것을 보장하지 않고 무작위로 선택된 몇 개의 키-값 쌍만 얻음을 보장합니다.
// redisServer 保存了 lru 计数器 struct redisServer { ... unsigned lruclock:22; /* Clock incrementing every minute, for LRU */ ... }; // 每一个 redis 对象都保存了 lru #define REDIS_LRU_CLOCK_MAX ((1<<21)-1) /* Max value of obj->lru */ #define REDIS_LRU_CLOCK_RESOLUTION 10 /* LRU clock resolution in seconds */ typedef struct redisObject { // 刚刚好 32 bits // 对象的类型,字符串/列表/集合/哈希表 unsigned type:4; // 未使用的两个位 unsigned notused:2; /* Not used */ // 编码的方式,redis 为了节省空间,提供多种方式来保存一个数据 // 譬如:“123456789” 会被存储为整数 123456789 unsigned encoding:4; unsigned lru:22; /* lru time (relative to server.lruclock) */ // 引用数 int refcount; // 数据指针 void *ptr; } robj; // redis 定时执行程序。联想:linux cron int serverCron(struct aeEventLoop *eventLoop, long long id, void *clientData) { ...... /* We have just 22 bits per object for LRU information. * So we use an (eventually wrapping) LRU clock with 10 seconds resolution. * 2^22 bits with 10 seconds resolution is more or less 1.5 years. * * Note that even if this will wrap after 1.5 years it's not a problem, * everything will still work but just some object will appear younger * to Redis. But for this to happen a given object should never be touched * for 1.5 years. * * Note that you can change the resolution altering the * REDIS_LRU_CLOCK_RESOLUTION define. */ updateLRUClock(); ...... } // 更新服务器的 lru 计数器 void updateLRUClock(void) { server.lruclock = (server.unixtime/REDIS_LRU_CLOCK_RESOLUTION) & REDIS_LRU_CLOCK_MAX; }
TTL 데이터 제거 메커니즘
redis 데이터 세트 데이터 구조는 키-값 쌍 만료 시간 테이블, 즉 redisDb.expires를 저장합니다. LRU 데이터 제거 메커니즘과 유사하게 TTL 데이터 제거 메커니즘은 다음과 같습니다. 만료 시간 테이블에서 여러 키-값 쌍을 무작위로 선택하고 TTL이 가장 큰 키-값 쌍을 꺼내 제거합니다.
마찬가지로 Redis는 모든 만료 시간 테이블에서 가장 빠르게 만료되는 키-값 쌍을 획득한다고 보장하지 않고 무작위로 선택된 소수의 키-값 쌍만 획득한다는 것을 알 수 있습니다.
Summary
redis는 서비스 클라이언트에서 명령을 실행할 때 사용된 메모리가 과도한지 여부를 감지합니다. 한도를 초과하면 데이터가 삭제됩니다.
// 执行命令 int processCommand(redisClient *c) { ...... // 内存超额 /* Handle the maxmemory directive. * * First we try to free some memory if possible (if there are volatile * keys in the dataset). If there are not the only thing we can do * is returning an error. */ if (server.maxmemory) { int retval = freeMemoryIfNeeded(); if ((c->cmd->flags & REDIS_CMD_DENYOOM) && retval == REDIS_ERR) { flagTransaction(c); addReply(c, shared.oomerr); return REDIS_OK; } } ...... } // 如果需要,是否一些内存 int freeMemoryIfNeeded(void) { size_t mem_used, mem_tofree, mem_freed; int slaves = listLength(server.slaves); // redis 从机回复空间和 AOF 内存大小不计算入 redis 内存大小 /* Remove the size of slaves output buffers and AOF buffer from the * count of used memory. */ mem_used = zmalloc_used_memory(); // 从机回复空间大小 if (slaves) { listIter li; listNode *ln; listRewind(server.slaves,&li); while((ln = listNext(&li))) { redisClient *slave = listNodeValue(ln); unsigned long obuf_bytes = getClientOutputBufferMemoryUsage(slave); if (obuf_bytes > mem_used) mem_used = 0; else mem_used -= obuf_bytes; } } // server.aof_buf && server.aof_rewrite_buf_blocks if (server.aof_state != REDIS_AOF_OFF) { mem_used -= sdslen(server.aof_buf); mem_used -= aofRewriteBufferSize(); } // 内存是否超过设置大小 /* Check if we are over the memory limit. */ if (mem_used <= server.maxmemory) return REDIS_OK; // redis 中可以设置内存超额策略 if (server.maxmemory_policy == REDIS_MAXMEMORY_NO_EVICTION) return REDIS_ERR; /* We need to free memory, but policy forbids. */ /* Compute how much memory we need to free. */ mem_tofree = mem_used - server.maxmemory; mem_freed = 0; while (mem_freed < mem_tofree) { int j, k, keys_freed = 0; // 遍历所有数据集 for (j = 0; j < server.dbnum; j++) { long bestval = 0; /* just to prevent warning */ sds bestkey = NULL; struct dictEntry *de; redisDb *db = server.db+j; dict *dict; // 不同的策略,选择的数据集不一样 if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU || server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_RANDOM { dict = server.db[j].dict; } else { dict = server.db[j].expires; } // 数据集为空,继续下一个数据集 if (dictSize(dict) == 0) continue; // 随机淘汰随机策略:随机挑选 /* volatile-random and allkeys-random policy */ if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_RANDOM || server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_RANDOM) { de = dictGetRandomKey(dict); bestkey = dictGetKey(de); } // LRU 策略:挑选最近最少使用的数据 /* volatile-lru and allkeys-lru policy */ else if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU || server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU) { // server.maxmemory_samples 为随机挑选键值对次数 // 随机挑选 server.maxmemory_samples个键值对,驱逐最近最少使用的数据 for (k = 0; k < server.maxmemory_samples; k++) { sds thiskey; long thisval; robj *o; // 随机挑选键值对 de = dictGetRandomKey(dict); // 获取键 thiskey = dictGetKey(de); /* When policy is volatile-lru we need an additional lookup * to locate the real key, as dict is set to db->expires. */ if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU) de = dictFind(db->dict, thiskey); o = dictGetVal(de); // 计算数据的空闲时间 thisval = estimateObjectIdleTime(o); // 当前键值空闲时间更长,则记录 /* Higher idle time is better candidate for deletion */ if (bestkey == NULL || thisval > bestval) { bestkey = thiskey; bestval = thisval; } } } // TTL 策略:挑选将要过期的数据 /* volatile-ttl */ else if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_TTL) { // server.maxmemory_samples 为随机挑选键值对次数 // 随机挑选 server.maxmemory_samples个键值对,驱逐最快要过期的数据 for (k = 0; k < server.maxmemory_samples; k++) { sds thiskey; long thisval; de = dictGetRandomKey(dict); thiskey = dictGetKey(de); thisval = (long) dictGetVal(de); /* Expire sooner (minor expire unix timestamp) is better * candidate for deletion */ if (bestkey == NULL || thisval < bestval) { bestkey = thiskey; bestval = thisval; } } } // 删除选定的键值对 /* Finally remove the selected key. */ if (bestkey) { long long delta; robj *keyobj = createStringObject(bestkey,sdslen(bestkey)); // 发布数据更新消息,主要是 AOF 持久化和从机 propagateExpire(db,keyobj); // 注意, propagateExpire() 可能会导致内存的分配, propagateExpire() 提前执行就是因为 redis 只计算 dbDelete() 释放的内存大小。倘若同时计算 dbDelete() 释放的内存 和 propagateExpire() 分配空间的大小,与此同时假设分配空间大于释放空间,就有可能永远退不出这个循环。 // 下面的代码会同时计算 dbDelete() 释放的内存和 propagateExpire() 分配空间的大小: // propagateExpire(db,keyobj); // delta = (long long) zmalloc_used_memory(); // dbDelete(db,keyobj); // delta -= (long long) zmalloc_used_memory(); // mem_freed += delta; ///////////////////////////////////////// /* We compute the amount of memory freed by dbDelete() alone. * It is possible that actually the memory needed to propagate * the DEL in AOF and replication link is greater than the one * we are freeing removing the key, but we can't account for * that otherwise we would never exit the loop. * * AOF and Output buffer memory will be freed eventually so * we only care about memory used by the key space. */ // 只计算 dbDelete() 释放内存的大小 delta = (long long) zmalloc_used_memory(); dbDelete(db,keyobj); delta -= (long long) zmalloc_used_memory(); mem_freed += delta; server.stat_evictedkeys++; // 将数据的删除通知所有的订阅客户端 notifyKeyspaceEvent(REDIS_NOTIFY_EVICTED, "evicted", keyobj, db->id); decrRefCount(keyobj); keys_freed++; // 将从机回复空间中的数据及时发送给从机 /* When the memory to free starts to be big enough, we may * start spending so much time here that is impossible to * deliver data to the slaves fast enough, so we force the * transmission here inside the loop. */ if (slaves) flushSlavesOutputBuffers(); } } // 未能释放空间,且此时 redis 使用的内存大小依旧超额,失败返回 if (!keys_freed) return REDIS_ERR; /* nothing to free... */ } return REDIS_OK; }
적용 가능한 시나리오
몇 가지 전략의 적용 가능한 시나리오를 살펴보겠습니다.
1. allkeys-lru: 캐시에 대한 애플리케이션의 액세스가 거듭제곱 법칙 분포를 따르는 경우(즉, 비교적 핫 데이터가 있는 경우) ) 또는 애플리케이션의 캐시 액세스 분포를 잘 알지 못하기 때문에 allkeys-lru 전략을 선택할 수 있습니다.
2. allkeys-random: 애플리케이션이 캐시 키에 대한 액세스 확률이 동일하다면 이 전략을 사용할 수 있습니다.
3. 휘발성-ttl: 이 전략을 사용하면 어떤 키가 제거에 더 적합한지 Redis에 알릴 수 있습니다.
그리고 하나의 Redis 인스턴스를 캐시와 영구 저장소에 모두 적용할 때는 휘발성-lru 전략과 휘발성-랜덤 전략이 적합합니다. 하지만 두 개의 Redis 인스턴스를 사용해도 동일한 효과를 얻을 수 있다는 점은 가치가 있습니다. 언급할 점은 키 만료 시간을 설정하면 실제로 더 많은 메모리를 소비하므로 메모리를 더 효율적으로 사용하려면 allkeys-lru 전략을 사용하는 것이 좋습니다.
더 많은 Redis 지식을 알고 싶다면 redis 입문 튜토리얼 칼럼을 주목해 주세요.
위 내용은 Redis 데이터 제거 전략에 대한 자세한 설명의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!