Python을 기반으로 두 데이터 세트의 P 값을 계산하는 방법
A/B 테스트 평가를 수행할 때 p_value를 사용해야 합니다. 이 기사에서는 Python을 사용하여 두 데이터 세트의 유의성을 계산하는 방법을 기록합니다.
1. 코드
# TTest.py # -*- coding: utf-8 -*- ''' # Created on 2020-05-20 20:36 # TTest.py # @author: huiwenhua ''' ## Import the packages import numpy as np from scipy import stats def get_p_value(arrA, arrB): a = np.array(arrA) b = np.array(arrB) t, p = stats.ttest_ind(a,b) return p if __name__ == "__main__": get_p_value([1, 2, 3, 5, ], [6, 7, 8, 9, 10])
2. T-검정: 2-표본 T-검정
2-표본 t-검정은 두 모집단이 다음과 같이 표현되는지 비교하는 것입니다. 두 샘플의 차이가 큽니다. 표본이 정규 분포에서 나오도록 요구하는 것 외에도 두 표본의 모집단 분산이 동일해야 하며, 이는 "분산의 동질성"입니다.
귀무 가설 테스트: 표본 평균에 차이가 없습니다(μ=μ0)
Python 명령 stats.ttest_ind(data1,data2)
두 모집단의 분산이 같은지 확실하지 않은 경우 다음을 수행해야 합니다. 먼저 Levene 테스트를 사용하여 두 모집단에 분산이 있는지 테스트합니다. 동질성 stats.levene(data1,data2) 반환된 결과의 p-값이 0.05보다 훨씬 크면 두 모집단에 분산의 동질성이 있다고 믿습니다. 두 모집단에 동종 분산이 없으면 다음과 같이 매개변수 equal_val을 추가하고 이를 False로 설정해야 합니다.
stats.ttest_ind(data1,data2,equal_var=False) // TTest의 기본값은 분산의 동질성입니다
3. 결과 해석
p 값이 특정 유의 수준 α보다 작은 경우( 0.05 등), 표본 평균에 유의미한 차이가 있는 것으로 간주되며, 구체적인 분석은 선택한 가설이 양측 가설인지(보다 작음과 큼으로 구분됨) 단측 가설인지에 따라 달라집니다. 양면 테스트를 수행하려면 stats.ttest_ind로 이동하세요.
t 값이 0보다 크면 첫 번째 데이터 세트가 두 번째 데이터 세트보다 낫다는 ((1-p)*100)% 신뢰도가 있습니다. 예를 들어, p=0.05이면 첫 번째 데이터 세트가 두 번째 데이터 세트보다 낫다고 95% 확신합니다.
관련 학습 권장사항: python 비디오 튜토리얼
위 내용은 Python을 기반으로 두 데이터 세트의 P 값을 계산하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

PHP는 주로 절차 적 프로그래밍이지만 객체 지향 프로그래밍 (OOP)도 지원합니다. Python은 OOP, 기능 및 절차 프로그래밍을 포함한 다양한 패러다임을 지원합니다. PHP는 웹 개발에 적합하며 Python은 데이터 분석 및 기계 학습과 같은 다양한 응용 프로그램에 적합합니다.

PHP는 웹 개발 및 빠른 프로토 타이핑에 적합하며 Python은 데이터 과학 및 기계 학습에 적합합니다. 1.PHP는 간단한 구문과 함께 동적 웹 개발에 사용되며 빠른 개발에 적합합니다. 2. Python은 간결한 구문을 가지고 있으며 여러 분야에 적합하며 강력한 라이브러리 생태계가 있습니다.

PHP는 1994 년에 시작되었으며 Rasmuslerdorf에 의해 개발되었습니다. 원래 웹 사이트 방문자를 추적하는 데 사용되었으며 점차 서버 측 스크립팅 언어로 진화했으며 웹 개발에 널리 사용되었습니다. Python은 1980 년대 후반 Guidovan Rossum에 의해 개발되었으며 1991 년에 처음 출시되었습니다. 코드 가독성과 단순성을 강조하며 과학 컴퓨팅, 데이터 분석 및 기타 분야에 적합합니다.

Python은 부드러운 학습 곡선과 간결한 구문으로 초보자에게 더 적합합니다. JavaScript는 가파른 학습 곡선과 유연한 구문으로 프론트 엔드 개발에 적합합니다. 1. Python Syntax는 직관적이며 데이터 과학 및 백엔드 개발에 적합합니다. 2. JavaScript는 유연하며 프론트 엔드 및 서버 측 프로그래밍에서 널리 사용됩니다.

Sublime 텍스트로 Python 코드를 실행하려면 먼저 Python 플러그인을 설치 한 다음 .py 파일을 작성하고 코드를 작성한 다음 CTRL B를 눌러 코드를 실행하면 콘솔에 출력이 표시됩니다.

Visual Studio Code (VSCODE)에서 코드를 작성하는 것은 간단하고 사용하기 쉽습니다. vscode를 설치하고, 프로젝트를 만들고, 언어를 선택하고, 파일을 만들고, 코드를 작성하고, 저장하고 실행합니다. VSCODE의 장점에는 크로스 플랫폼, 무료 및 오픈 소스, 강력한 기능, 풍부한 확장 및 경량 및 빠른가 포함됩니다.

VS 코드는 파이썬을 작성하는 데 사용될 수 있으며 파이썬 애플리케이션을 개발하기에 이상적인 도구가되는 많은 기능을 제공합니다. 사용자는 다음을 수행 할 수 있습니다. Python 확장 기능을 설치하여 코드 완료, 구문 강조 및 디버깅과 같은 기능을 얻습니다. 디버거를 사용하여 코드를 단계별로 추적하고 오류를 찾아 수정하십시오. 버전 제어를 위해 git을 통합합니다. 코드 서식 도구를 사용하여 코드 일관성을 유지하십시오. 라인 도구를 사용하여 잠재적 인 문제를 미리 발견하십시오.

메모장에서 Python 코드를 실행하려면 Python 실행 파일 및 NPPEXEC 플러그인을 설치해야합니다. Python을 설치하고 경로를 추가 한 후 nppexec 플러그인의 명령 "Python"및 매개 변수 "{current_directory} {file_name}"을 구성하여 Notepad의 단축키 "F6"을 통해 Python 코드를 실행하십시오.
