C 언어에서 휘발성 키워드의 기능은 무엇입니까?
C 언어에서 휘발성 키워드의 역할: 나중에 정의된 변수는 언제든지 변경될 수 있음을 컴파일러에 상기시키므로 컴파일된 프로그램이 이 변수를 저장하거나 읽어야 할 때마다 컴파일러에게 해당 변수에 대해 아무 작업도 수행하지 않도록 지시합니다. 최적화, 데이터는 가변 메모리 주소에서 직접 읽혀져 오류를 방지하기 위해 특수 주소에 대한 안정적인 액세스를 제공합니다.
튜토리얼 추천: "c 언어 튜토리얼 영상"
1. 소개
1. 컴파일러 최적화 소개:
메모리 액세스 속도가 훨씬 낮기 때문에 CPU 처리 속도, 시스템의 전반적인 성능을 향상시키기 위해 하드웨어에 하드웨어 캐시 캐시가 도입되어 메모리에 대한 액세스를 가속화합니다. 또한 최신 CPU의 명령어 실행은 반드시 엄격한 순서를 따르지는 않습니다. 상관관계가 없는 명령어는 CPU의 명령어 파이프라인을 최대한 활용하고 실행 속도를 향상시키는 순서대로 실행될 수 있습니다. 위의 내용은 하드웨어 수준 최적화입니다. 소프트웨어 수준의 최적화를 살펴보겠습니다. 하나는 프로그래머가 코드를 작성할 때 최적화하고, 다른 하나는 컴파일러에 의해 최적화합니다. 컴파일러 최적화에 일반적으로 사용되는 방법은 다음과 같습니다. 메모리 변수를 레지스터에 캐싱, CPU명령 파이프라인을 최대한 활용하기 위한 명령 순서 조정 일반적인 방법은 읽기 및 쓰기 명령을 재정렬하는 것입니다. 기존 메모리를 최적화할 때 이러한 최적화는 투명하고 매우 효율적입니다. 컴파일러 최적화나 하드웨어 재정렬로 인해 발생하는 문제에 대한 해결책은 하드웨어(또는 다른 프로세서)의 관점에서 특정 순서로 수행되어야 하는 작업 사이에 메모리 장벽을 배치하는 것입니다. Linux는 컴파일러 실행 순서 문제를 해결합니다.
void Barrier(void)
이 함수는 컴파일러에 메모리 장벽을 삽입하라고 알리지만 하드웨어에는 유효하지 않습니다. 컴파일된 코드는 현재 CPU 레지스터의 모든 수정된 값을 메모리에 저장한 다음 다음과 같은 경우 메모리에서 검색합니다. 이 데이터를 읽어야 합니다.
2. Volatile은 항상 최적화와 관련되어 있습니다. 컴파일러에는 프로그램 내 변수가 어디에 할당되었는지, 어디에 사용되었는지, 분석 결과가 어디에 사용되는지 분석하는 기술이 있습니다. 지속적인 병합 및 지속적인 전파를 위해 최적화를 기다리는 동안 일부 코드를 제거할 수 있습니다. 그러나 프로그램에서 이러한 최적화가 필요하지 않은 경우도 있습니다. 이 경우 휘발성 키워드를 사용하여 이러한 최적화를 금지할 수 있습니다.
2. 휘발성에 대한 자세한 설명:
1. 원리 및 기능:
휘발성의 원래 의미는 "휘발성"입니다. 왜냐하면 레지스터에 액세스하는 것이 메모리 장치에 액세스하는 것보다 훨씬 빠르기 때문입니다. 일반적으로 메모리에 대한 액세스를 줄이기 위해 최적화가 이루어지지만 더티 데이터를 읽을 수 있습니다.
변수 값을 선언하기 위해 휘발성을 사용해야 하는 경우 시스템은 이전 명령어가 해당 메모리에서 데이터를 읽었더라도 항상 해당 메모리에서 데이터를 다시 읽습니다.
정확하게 말하면, 이 키워드로 선언된 변수를 발견하면 컴파일러는 더 이상 변수에 액세스하는 코드를 최적화하지 않으므로(데이터는 변수 메모리 주소에서 직접 읽혀집니다), 따라서 특수 주소에 대한 액세스를 제공합니다. 액세스; 휘발성이 사용되지 않으면 컴파일러는 선언된 명령문을 최적화합니다. (간단히 말하면 휘발성 키워드는 컴파일러의 결과에 영향을 미칩니다. 휘발성으로 선언된 변수는 변수가 언제든지 변경될 수 있다는 의미입니다. 오류를 방지하려면 변수와 관련된 작업에 대해 컴파일 최적화를 수행하지 마세요)
2. 두 가지 예를 살펴보겠습니다.
1> 컴파일러에게 최적화를 수행할 수 없다고 알립니다
예를 들어 특정 주소에 두 개의 명령을 보내려는 경우:
int *ip =...; //设备地址 *ip = 1; //第一个指令 *ip = 2; //第二个指令
위 프로그램 컴파일러는 다음과 같이 최적화될 수 있습니다.
int *ip = ...; *ip = 2;
결과적으로 첫 번째 명령어가 손실됩니다. 휘발성을 사용하는 경우 컴파일러는 최적화를 허용하지 않으므로 프로그램의 원래 의도가 보장됩니다.
volatile int *ip = ...; *ip = 1; *ip = 2;
컴파일러가 최적화를 원하더라도 두 개의 pay 문을 하나로 변환하지 않습니다. 다른 최적화만 수행할 수 있습니다.
2>휘발성으로 정의된 변수는 프로그램 외부에서 변경되므로 매번 메모리에서 읽어야 하며, 캐시나 레지스터에 있는 백업은 재사용할 수 없습니다.
예:
volatile char a; a=0; while(!a){ //do some things; } doother();
如果没有 volatiledoother()不会被执行
3.下面是使用volatile变量的几个场景:
1>中断服务程序中修改的供其它程序检测的变量需要加volatile;
例如:
static int i=0; int main(void) { ... while (1){ if (i) dosomething(); } } /* Interrupt service routine. */ void ISR_2(void) { i=1; }
程序的本意是希望ISR_2中断产生时,在main函数中调用dosomething函数,但是,由于编译器判断在main函数里面没有修改过i,因此可能只执行一次对从i到某寄存器的读操作,然后每次if判断都只使用这个寄存器里面的“i副本”,导致dosomething永远也不会被调用。如果将变量加上volatile修饰,则编译器保证对此变量的读写操作都不会被优化(肯定执行)。此例中i也应该如此说明。
2>多任务环境下各任务间共享的标志应该加volatile
3>存储器映射的硬件寄存器通常也要加voliate,因为每次对它的读写都可能有不同意义。
例如:
假设要对一个设备进行初始化,此设备的某一个寄存器为0xff800000。
int *output = (unsigned int *)0xff800000;//定义一个IO端口; int init(void) { int i; for(i=0;i< 10;i++){ *output = i; } }
经过编译器优化后,编译器认为前面循环半天都是废话,对最后的结果毫无影响,因为最终只是将output这个指针赋值为9,所以编译器最后给你编译编译的代码结果相当于:
int init(void) { *output = 9; }
如果你对此外部设备进行初始化的过程是必须是像上面代码一样顺序的对其赋值,显然优化过程并不能达到目的。反之如果你不是对此端口反复写操作,而是反复读操作,其结果是一样的,编译器在优化后,也许你的代码对此地址的读操作只做了一次。然而从代码角度看是没有任何问题的。这时候就该使用volatile通知编译器这个变量是一个不稳定的,在遇到此变量时候不要优化。
例如:
volatile int *output=(volatile unsigned int *)0xff800000;//定义一个I/O端口
另外,以上这几种情况经常还要同时考虑数据的完整性(相互关联的几个标志读了一半被打断了重写),在1中可以通过关中断来实现,2中禁止任务调度,3中则只能依靠硬件的良好设计。
4.几个问题
1)一个参数既可以是const还可以是volatile吗?
可以的,例如只读的状态寄存器。它是volatile因为它可能被意想不到地改变。它是const因为程序不应该试图去修改它。
2) 一个指针可以是volatile 吗?
可以,当一个中服务子程序修该一个指向一个buffer的指针时。
5.volatile的本质:
1> 编译器的优化
在本次线程内, 当读取一个变量时,为提高存取速度,编译器优化时有时会先把变量读取到一个寄存器中;以后,再取变量值时,就直接从寄存器中取值;当变量值在本线程里改变时,会同时把变量的新值copy到该寄存器中,以便保持一致。
当变量在因别的线程等而改变了值,该寄存器的值不会相应改变,从而造成应用程序读取的值和实际的变量值不一致。
当该寄存器在因别的线程等而改变了值,原变量的值不会改变,从而造成应用程序读取的值和实际的变量值不一致。
2>volatile应该解释为“直接存取原始内存地址”比较合适,“易变的”这种解释简直有点误导人。
6.下面的函数有什么错误:
int square(volatile int *ptr) { return *ptr * *ptr; }
该程序的目的是用来返指针*ptr指向值的平方,但是,由于*ptr指向一个volatile型参数,编译器将产生类似下面的代码:
int square(volatile int *ptr) { int a,b; a = *ptr; b = *ptr; return a * b; }
由于*ptr的值可能被意想不到地该变,因此a和b可能是不同的。结果,这段代码可能返不是你所期望的平方值!正确的代码如下:
long square(volatile int *ptr) { int a; a = *ptr; return a * a; }
注意:频繁地使用volatile很可能会增加代码尺寸和降低性能,因此要合理的使用volatile。
更多编程相关知识,请访问:编程教学!!
위 내용은 C 언어에서 휘발성 키워드의 기능은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











C 언어 데이터 구조 : 트리 및 그래프의 데이터 표현은 노드로 구성된 계층 적 데이터 구조입니다. 각 노드에는 데이터 요소와 하위 노드에 대한 포인터가 포함되어 있습니다. 이진 트리는 특별한 유형의 트리입니다. 각 노드에는 최대 두 개의 자식 노드가 있습니다. 데이터는 structtreenode {intdata; structtreenode*왼쪽; structReenode*오른쪽;}을 나타냅니다. 작업은 트리 트래버스 트리 (사전 조정, 인 순서 및 나중에 순서) 검색 트리 삽입 노드 삭제 노드 그래프는 요소가 정점 인 데이터 구조 모음이며 이웃을 나타내는 오른쪽 또는 무의미한 데이터로 모서리를 통해 연결할 수 있습니다.

파일 작동 문제에 대한 진실 : 파일 개방이 실패 : 불충분 한 권한, 잘못된 경로 및 파일이 점유 된 파일. 데이터 쓰기 실패 : 버퍼가 가득 차고 파일을 쓸 수 없으며 디스크 공간이 불충분합니다. 기타 FAQ : 파일이 느리게 이동, 잘못된 텍스트 파일 인코딩 및 이진 파일 읽기 오류.

C 언어 멀티 스레딩 프로그래밍 안내서 : 스레드 생성 : pthread_create () 함수를 사용하여 스레드 ID, 속성 및 스레드 함수를 지정합니다. 스레드 동기화 : 뮤텍스, 세마포어 및 조건부 변수를 통한 데이터 경쟁 방지. 실제 사례 : 멀티 스레딩을 사용하여 Fibonacci 번호를 계산하고 여러 스레드에 작업을 할당하고 결과를 동기화하십시오. 문제 해결 : 프로그램 충돌, 스레드 정지 응답 및 성능 병목 현상과 같은 문제를 해결합니다.

C에서 카운트 다운을 출력하는 방법? 답변 : 루프 명령문을 사용하십시오. 단계 : 1. 변수 n을 정의하고 카운트 다운 번호를 출력에 저장합니다. 2. n이 1보다 작을 때까지 n을 지속적으로 인쇄하려면 while 루프를 사용하십시오. 3. 루프 본체에서 n의 값을 인쇄하십시오. 4. 루프가 끝나면 n을 1 씩 빼기 위해 다음 작은 상호 상호를 출력합니다.

알고리즘은 문제를 해결하기위한 일련의 지침이며 실행 속도 및 메모리 사용량은 다양합니다. 프로그래밍에서 많은 알고리즘은 데이터 검색 및 정렬을 기반으로합니다. 이 기사에서는 여러 데이터 검색 및 정렬 알고리즘을 소개합니다. 선형 검색은 배열 [20,500,10,5,100,1,50]이 있으며 숫자 50을 찾아야한다고 가정합니다. 선형 검색 알고리즘은 대상 값이 발견되거나 전체 배열이 통과 될 때까지 배열의 각 요소를 하나씩 점검합니다. 알고리즘 플로우 차트는 다음과 같습니다. 선형 검색의 의사 코드는 다음과 같습니다. 각 요소를 확인하십시오. 대상 값이 발견되는 경우 : true return false clanue 구현 : #includeintmain (void) {i 포함

C 언어 함수는 재사용 가능한 코드 블록이며 처리를위한 매개 변수를 수신하며 결과를 반환합니다. 스위스 육군 나이프와 유사하며 강력하며 신중하게 사용해야합니다. 함수에는 형식 정의, 매개 변수, 반환 값 및 기능 본체와 같은 요소가 포함됩니다. 고급 사용법에는 기능 포인터, 재귀 함수 및 콜백 기능이 포함됩니다. 일반적인 오류는 유형 불일치이며 프로토 타입을 선언하는 것을 잊는 것입니다. 디버깅 기술에는 변수 인쇄 및 디버거 사용이 포함됩니다. 성능 최적화는 인라인 함수를 사용합니다. 기능 설계는 단일 책임의 원칙을 따라야합니다. C 언어 기능의 숙련도는 프로그래밍 효율성과 코드 품질을 크게 향상시킬 수 있습니다.

C 언어 데이터 구조 : 인공 지능 분야에서 데이터 구조의 주요 역할 개요 인공 지능 분야에서 데이터 구조는 다량의 데이터를 처리하는 데 중요합니다. 데이터 구조는 데이터를 구성하고 관리하고 알고리즘을 최적화하며 프로그램 효율성을 향상시키는 효과적인 방법을 제공합니다. 공통 데이터 구조는 일반적으로 C 언어로 사용되는 데이터 구조에는 다음이 포함됩니다. 배열 : 동일한 유형의 연속 저장된 데이터 항목 세트. 구조 : 다양한 유형의 데이터를 함께 구성하고 이름을 제공하는 데이터 유형. 링크 된 목록 : 데이터 항목이 포인터로 함께 연결되는 선형 데이터 구조. 스택 : 최후의 첫 번째 (LIFO) 원칙을 따르는 데이터 구조. 대기열 : 첫 번째 첫 번째 (FIFO) 원칙을 따르는 데이터 구조. 실제 사례 : 그래프 이론의 인접 테이블은 인공 지능입니다.

C 언어 처리 파일에 대한 팁 문제 해결 C 언어로 파일을 처리 할 때 다양한 문제가 발생할 수 있습니다. 다음은 일반적인 문제와 해당 솔루션입니다. 문제 1 : 파일 코드를 열 수 없음 : 파일*fp = fopen ( "myfile.txt", "r"); if (fp == null) {// 파일 열기 실패} 이유 : 파일 경로 오류 파일이 존재하지 않으면 파일을 확인하여 파일에 실패한 문제 : 파일 읽기 문제 2 : 코드를 확인하십시오. charbuffer [100]; size_tread_bytes = fread (버퍼, 1, siz
