백엔드 개발 파이썬 튜토리얼 Python은 중첩된 JSON을 도입하여 몇 초 만에 데이터프레임으로 변환합니다!

Python은 중첩된 JSON을 도입하여 몇 초 만에 데이터프레임으로 변환합니다!

Dec 29, 2020 am 09:34 AM
dataframe json pandas python 데이터 처리

Python Tutorial이 칼럼에서는 JSON을 중첩하는 방법을 소개합니다

Python은 중첩된 JSON을 도입하여 몇 초 만에 데이터프레임으로 변환합니다!

권장(무료): Python Tutorial

API를 호출하면 문서 데이터베이스가 중첩된 상태로 반환됩니다. JSON 개체에서 Python을 사용하여 중첩 구조의 키를 열로 변환하려고 하면 pandas에 로드된 데이터는 종종 다음 결과: API和文档数据库会返回嵌套的JSON对象,当我们使用Python尝试将嵌套结构中的键转换为列时,数据加载到pandas中往往会得到如下结果:

df = pd.DataFrame.from_records(results [“ issues”],columns = [“ key”,“ fields”])
로그인 후 복사
说明:这里results是一个大的字典,issues是results其中的一个键,issues的值为一个嵌套JSON对象字典的列表,后面会看到JSON嵌套结构。

问题在于API返回了嵌套的JSON结构,而我们关心的键在对象中确处于不同级别。

嵌套的JSON结构张成这样的。

而我们想要的是下面这样的。

下面以一个API返回的数据为例,API通常包含有关字段的元数据。假设下面这些是我们想要的字段。

  • key:JSON密钥,在第一级的位置。
  • summary:第二级的“字段”对象。
  • status name:第三级位置。
  • statusCategory name:位于第4个嵌套级别。

如上,我们选择要提取的字段在issues列表内的JSON结构中分别处于4个不同的嵌套级别,一环扣一环。

{
  "expand": "schema,names",
  "issues": [
    {
      "fields": {
        "issuetype": {
          "avatarId": 10300,
          "description": "",
          "id": "10005",
          "name": "New Feature",
          "subtask": False
        },
        "status": {
          "description": "A resolution has been taken, and it is awaiting verification by reporter. From here issues are either reopened, or are closed.",
          "id": "5",
          "name": "Resolved",
          "statusCategory": {
            "colorName": "green",
            "id": 3,
            "key": "done",
            "name": "Done",
          }
        },
        "summary": "Recovered data collection Defraglar $MFT problem"
      },
      "id": "11861",
      "key": "CAE-160",
    },
    {
      "fields": { 
... more issues],
  "maxResults": 5,
  "startAt": 0,
  "total": 160
}
로그인 후 복사

一个不太好的解决方案

一种选择是直接撸码,写一个查找特定字段的函数,但问题是必须对每个嵌套字段调用此函数,然后再调用.applyDataFrame中的新列。

为获取我们想要的几个字段,首先我们提取fields键内的对象至列:

df = (
    df["fields"]
    .apply(pd.Series)
    .merge(df, left_index=True, right_index = True)
)
로그인 후 복사

从上表看出,只有summary是可用的,issuetype、status等仍然埋在嵌套对象中。

下面是提取issuetype中的name的一种方法。

# 提取issue type的name到一个新列叫"issue_type"
df_issue_type = (
    df["issuetype"]
    .apply(pd.Series)
    .rename(columns={"name": "issue_type_name"})["issue_type_name"]
)
df = df.assign(issue_type_name = df_issue_type)
로그인 후 복사

像上面这样,如果嵌套层级特别多,就需要自己手撸一个递归来实现了,因为每层嵌套都需要调用一个像上面解析并添加到新列的方法。

对于编程基础薄弱的朋友,手撸一个其实还挺麻烦的,尤其是对于数据分析师,着急想用数据的时候,希望可以快速拿到结构化的数据进行分析。

下面东哥分享一个pandas的内置解决方案。

内置的解决方案

pandas中有一个牛逼的内置功能叫 .json_normalize

pandas的文档中提到:将半结构化JSON数据规范化为平面表。

前面方案的所有代码,用这个内置功能仅需要3行就可搞定。步骤很简单,懂了下面几个用法即可。

确定我们要想的字段,使用 . 符号连接嵌套对象。

将想要处理的嵌套列表(这里是results["issues"])作为参数放进 .json_normalize 中。

过滤我们定义的FIELDS列表。

FIELDS = ["key", "fields.summary", "fields.issuetype.name", "fields.status.name", "fields.status.statusCategory.name"]
df = pd.json_normalize(results["issues"])
df[FIELDS]
로그인 후 복사

没错,就这么简单。

其它操作

记录路径

除了像上面那样传递results["issues"]列表之外,我们还使用record_path参数在JSON对象中指定列表的路径。

# 使用路径而不是直接用results["issues"]
pd.json_normalize(results, record_path="issues")[FIELDS]
로그인 후 복사

自定义分隔符

还可以使用sep参数自定义嵌套结构连接的分隔符,比如下面将默认的“.”替换“-”。

### 用 "-" 替换默认的 "."
FIELDS = ["key", "fields-summary", "fields-issuetype-name", "fields-status-name", "fields-status-statusCategory-name"]
pd.json_normalize(results["issues"], sep = "-")[FIELDS]
로그인 후 복사

控制递归

如果不想递归到每个子对象,可以使用max_level参数控制深度。在这种情况下,由于statusCategory.name字段位于JSON对象的第4级,因此不会包含在结果DataFrame中。

# 只深入到嵌套第二级
pd.json_normalize(results, record_path="issues", max_level = 2)
로그인 후 복사

下面是.json_normalizepandasrrreee

설명: 여기서 결과는 큰 사전이고, Issue는 결과의 키이며, Issue의 값은 중첩된 JSON 개체 사전 목록입니다. 나중에 JSON 중첩 구조를 볼 수 있습니다.
문제는 API가 중첩된 JSON 구조를 반환하고 우리가 관심을 갖는 키가 실제로 객체의 다른 수준에 있다는 것입니다. 🎜🎜중첩된 JSON 구조는 다음과 같습니다. 🎜🎜그리고 우리가 원하는 것은 이런 것입니다. 🎜🎜다음은 API에서 반환한 데이터를 예로 들어 보겠습니다. API에는 일반적으로 관련 필드에 대한 메타데이터가 포함되어 있습니다. 이것이 우리가 원하는 필드라고 가정해 보겠습니다. 🎜
  • 키: 첫 번째 수준의 JSON 키입니다.
  • 요약: 두 번째 수준의 "필드" 개체입니다.
  • 상태 이름: 세 번째 수준 위치.
  • statusCategory 이름: 4번째 중첩 수준에 위치합니다.
🎜위와 같이 추출하기로 선택한 필드는 문제 목록의 JSON 구조에서 차례로 4개의 서로 다른 중첩 수준에 있습니다. 🎜rrreee🎜🎜별로 좋지 않은 해결책🎜🎜🎜한 가지 옵션은 직접 코딩하고 특정 필드를 찾는 함수를 작성하는 것이지만 문제는 이 함수를 각 중첩 필드에 대해 호출한 다음 를 호출해야 한다는 것입니다. <code>DataFrame의 새 열에를 적용합니다. 🎜🎜원하는 여러 필드를 얻으려면 먼저 필드 키에서 열의 개체를 추출합니다. 🎜rrreee🎜위 표에서 볼 수 있듯이 요약만 사용할 수 있고 이슈 유형, 상태 등은 여전히 ​​중첩되어 묻혀 있습니다. 사물. 🎜🎜다음은 issuetype에서 이름을 추출하는 방법입니다. 🎜rrreee🎜위처럼 중첩 수준이 너무 많으면 재귀를 직접 구현해야 합니다. 각 중첩 수준마다 위와 같은 메서드를 호출하여 구문 분석하고 새 열에 추가해야 하기 때문입니다. 🎜🎜프로그래밍 기초가 약한 친구들에게는 사실 하나 고르기가 상당히 까다롭습니다. 특히 데이터 분석가의 경우 데이터 사용에 대한 불안감이 있을 때 분석을 위해 구조화된 데이터를 빨리 얻고 싶어합니다. 🎜🎜이제 당 형제는 pandas를 위한 내장 솔루션을 공유합니다. 🎜🎜🎜내장 솔루션🎜🎜🎜pandas에는 .json_normalize라는 멋진 내장 함수가 있습니다. 🎜🎜pandas 문서에서는 반구조화된 JSON 데이터를 플랫 테이블로 정규화한다고 언급합니다. 🎜🎜이 내장 함수를 사용하면 이전 솔루션의 모든 코드를 단 3줄로 완성할 수 있습니다. 단계는 매우 간단합니다. 다음 사용법을 이해하세요. 🎜🎜원하는 필드를 결정하고 . 기호를 사용하여 중첩된 개체를 연결합니다. 🎜🎜처리하려는 중첩 목록(여기서는 results["issues"])을 매개변수로 .json_normalize에 넣습니다. 🎜🎜우리가 정의한 FIELDS 목록을 필터링하세요. 🎜rrreee🎜네, 정말 간단해요. 🎜🎜🎜기타 작업🎜🎜🎜🎜레코드 경로🎜🎜🎜위와 같이 results["issues"] 목록을 전달하는 것 외에도 다음에서 record_path 매개변수를 사용합니다. JSON 객체에 지정된 목록의 경로입니다. 🎜rrreee🎜🎜사용자 정의 구분 기호🎜🎜🎜 sep 매개 변수를 사용하여 중첩 구조 연결에 대한 구분 기호를 사용자 정의할 수도 있습니다. 예를 들어 아래에서 기본값 "."을 "-"로 바꿉니다. 🎜rrreee🎜🎜재귀 제어🎜🎜🎜각 하위 개체로 재귀하지 않으려면 max_level 매개변수를 사용하여 깊이를 제어할 수 있습니다. 이 경우 statusCategory.name 필드는 JSON 개체의 레벨 4에 있으므로 결과 DataFrame에 포함되지 않습니다. 🎜rrreee🎜다음은 .json_normalize에 대한 pandas 공식 문서 설명입니다. 이해가 안 되시면 이번에는 동 형제님이 직접 배워 보세요. 여기에 소개합니다. 🎜🎜pandas 공식 문서: https://pandas.pydata.org/pan...🎜

위 내용은 Python은 중첩된 JSON을 도입하여 몇 초 만에 데이터프레임으로 변환합니다!의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

설치 후 MySQL을 사용하는 방법 설치 후 MySQL을 사용하는 방법 Apr 08, 2025 am 11:48 AM

이 기사는 MySQL 데이터베이스의 작동을 소개합니다. 먼저 MySQLworkBench 또는 명령 줄 클라이언트와 같은 MySQL 클라이언트를 설치해야합니다. 1. MySQL-Uroot-P 명령을 사용하여 서버에 연결하고 루트 계정 암호로 로그인하십시오. 2. CreateABase를 사용하여 데이터베이스를 작성하고 데이터베이스를 선택하십시오. 3. CreateTable을 사용하여 테이블을 만들고 필드 및 데이터 유형을 정의하십시오. 4. InsertInto를 사용하여 데이터를 삽입하고 데이터를 쿼리하고 업데이트를 통해 데이터를 업데이트하고 DELETE를 통해 데이터를 삭제하십시오. 이러한 단계를 마스터하고 일반적인 문제를 처리하는 법을 배우고 데이터베이스 성능을 최적화하면 MySQL을 효율적으로 사용할 수 있습니다.

PS 페더 링은 어떻게 전환의 부드러움을 제어합니까? PS 페더 링은 어떻게 전환의 부드러움을 제어합니까? Apr 06, 2025 pm 07:33 PM

깃털 통제의 열쇠는 점진적인 성격을 이해하는 것입니다. PS 자체는 그라디언트 곡선을 직접 제어하는 ​​옵션을 제공하지 않지만 여러 깃털, 일치하는 마스크 및 미세 선택으로 반경 및 구배 소프트를 유연하게 조정하여 자연스럽게 전이 효과를 달성 할 수 있습니다.

MySQL은 지불해야합니다 MySQL은 지불해야합니다 Apr 08, 2025 pm 05:36 PM

MySQL에는 무료 커뮤니티 버전과 유료 엔터프라이즈 버전이 있습니다. 커뮤니티 버전은 무료로 사용 및 수정할 수 있지만 지원은 제한되어 있으며 안정성이 낮은 응용 프로그램에 적합하며 기술 기능이 강합니다. Enterprise Edition은 안정적이고 신뢰할 수있는 고성능 데이터베이스가 필요하고 지원 비용을 기꺼이 지불하는 응용 프로그램에 대한 포괄적 인 상업적 지원을 제공합니다. 버전을 선택할 때 고려 된 요소에는 응용 프로그램 중요도, 예산 책정 및 기술 기술이 포함됩니다. 완벽한 옵션은없고 가장 적합한 옵션 만 있으므로 특정 상황에 따라 신중하게 선택해야합니다.

PS 페더 링을 설정하는 방법? PS 페더 링을 설정하는 방법? Apr 06, 2025 pm 07:36 PM

PS 페더 링은 이미지 가장자리 블러 효과로, 가장자리 영역에서 픽셀의 가중 평균에 의해 달성됩니다. 깃털 반경을 설정하면 흐림 정도를 제어 할 수 있으며 값이 클수록 흐려집니다. 반경을 유연하게 조정하면 이미지와 요구에 따라 효과를 최적화 할 수 있습니다. 예를 들어, 캐릭터 사진을 처리 할 때 더 작은 반경을 사용하여 세부 사항을 유지하고 더 큰 반경을 사용하여 예술을 처리 할 때 흐릿한 느낌을줍니다. 그러나 반경이 너무 커서 가장자리 세부 사항을 쉽게 잃을 수 있으며 너무 작아 효과는 분명하지 않습니다. 깃털 효과는 이미지 해상도의 영향을받으며 이미지 이해 및 효과 파악에 따라 조정해야합니다.

MySQL 설치 후 데이터베이스 성능을 최적화하는 방법 MySQL 설치 후 데이터베이스 성능을 최적화하는 방법 Apr 08, 2025 am 11:36 AM

MySQL 성능 최적화는 설치 구성, 인덱싱 및 쿼리 최적화, 모니터링 및 튜닝의 세 가지 측면에서 시작해야합니다. 1. 설치 후 innodb_buffer_pool_size 매개 변수와 같은 서버 구성에 따라 my.cnf 파일을 조정해야합니다. 2. 과도한 인덱스를 피하기 위해 적절한 색인을 작성하고 Execution 명령을 사용하여 실행 계획을 분석하는 것과 같은 쿼리 문을 최적화합니다. 3. MySQL의 자체 모니터링 도구 (showprocesslist, showstatus)를 사용하여 데이터베이스 건강을 모니터링하고 정기적으로 백업 및 데이터베이스를 구성하십시오. 이러한 단계를 지속적으로 최적화함으로써 MySQL 데이터베이스의 성능을 향상시킬 수 있습니다.

고로드 애플리케이션의 MySQL 성능을 최적화하는 방법은 무엇입니까? 고로드 애플리케이션의 MySQL 성능을 최적화하는 방법은 무엇입니까? Apr 08, 2025 pm 06:03 PM

MySQL 데이터베이스 성능 최적화 안내서 리소스 집약적 응용 프로그램에서 MySQL 데이터베이스는 중요한 역할을 수행하며 대규모 트랜잭션 관리를 담당합니다. 그러나 응용 프로그램 규모가 확장됨에 따라 데이터베이스 성능 병목 현상은 종종 제약이됩니다. 이 기사는 일련의 효과적인 MySQL 성능 최적화 전략을 탐색하여 응용 프로그램이 고 부하에서 효율적이고 반응이 유지되도록합니다. 실제 사례를 결합하여 인덱싱, 쿼리 최적화, 데이터베이스 설계 및 캐싱과 같은 심층적 인 주요 기술을 설명합니다. 1. 데이터베이스 아키텍처 설계 및 최적화 된 데이터베이스 아키텍처는 MySQL 성능 최적화의 초석입니다. 몇 가지 핵심 원칙은 다음과 같습니다. 올바른 데이터 유형을 선택하고 요구 사항을 충족하는 가장 작은 데이터 유형을 선택하면 저장 공간을 절약 할 수있을뿐만 아니라 데이터 처리 속도를 향상시킬 수 있습니다.

MongoDB 데이터베이스 비밀번호를 보는 Navicat의 방법 MongoDB 데이터베이스 비밀번호를 보는 Navicat의 방법 Apr 08, 2025 pm 09:39 PM

해시 값으로 저장되기 때문에 MongoDB 비밀번호를 Navicat을 통해 직접 보는 것은 불가능합니다. 분실 된 비밀번호 검색 방법 : 1. 비밀번호 재설정; 2. 구성 파일 확인 (해시 값이 포함될 수 있음); 3. 코드를 점검하십시오 (암호 하드 코드 메일).

부트 스트랩 페이지를 미리 보는 방법 부트 스트랩 페이지를 미리 보는 방법 Apr 07, 2025 am 10:06 AM

부트 스트랩 페이지의 미리보기 방법은 다음과 같습니다. 브라우저에서 직접 HTML 파일을 엽니 다. 라이브 서버 플러그인을 사용하여 브라우저를 자동으로 새로 고치십시오. 온라인 환경을 시뮬레이션하기 위해 로컬 서버를 구축하십시오.

See all articles