백엔드 개발 파이썬 튜토리얼 Amway 누구나 Python 빅데이터 분석 결과물을 갖고 있습니다.

Amway 누구나 Python 빅데이터 분석 결과물을 갖고 있습니다.

Dec 30, 2020 pm 05:41 PM
python 빅데이터 데이터 분석

python 동영상 튜토리얼이 칼럼에서는 빅데이터 분석 아티팩트를 소개합니다

Amway 누구나 Python 빅데이터 분석 결과물을 갖고 있습니다.

권장(무료): python 동영상 튜토리얼

Pandas의 실행 속도를 향상시키는 방법 code>는 이전에 여러 번 소개되었으며 <code>Dask가 자주 언급됩니다. 한번도 접해보지 않은 많은 친구들은 이에 대해 잘 알지 못할 수도 있습니다. 오늘은 이 아티팩트를 추천하겠습니다. Pandas运行速度的提升方法,之前已经介绍过很多回了,里面经常提及Dask,很多朋友没接触过可能不太了解,今天就推荐一下这个神器。

1、什么是Dask?

PandasNumpy大家都不陌生了,代码运行后数据都加载到RAM中,如果数据集特别大,我们就会看到内存飙升。但有时要处理的数据并不适合RAM,这时候Dask来了。

Dask是开源免费的。它是与其他社区项目(如Numpy,Pandas和Scikit-Learn)协调开发的。

官方:https://dask.org/

Dask支持PandasDataFrameNumpyArray的数据结构,并且既可在本地计算机上运行,也可以扩展到在集群上运行。

基本上,只要编写一次代码,使用普通的Pythonic语法,就可在本地运行或部署到多节点集群上。这本身就是一个很牛逼的功能了,但这还不是最牛逼的。

我觉得Dask的最牛逼的功能是:它兼容大部分我们已经在用的工具,并且只需改动少量的代码,就可以利用自己笔记本电脑上已有的处理能力并行运行代码。而并行处理数据就意味着更少的执行时间,更少的等待时间和更多的分析时间。

下面这个就是Dask进行数据处理的大致流程。
Amway 누구나 Python 빅데이터 분석 결과물을 갖고 있습니다.

2、Dask支持哪些现有工具?

这一点也是我比较看中的,因为Dask可以与Python数据处理和建模的库包兼容,沿用库包的API,这对于Python使用者来说学习成本是极低的。而像HadoopSpark这种大数据处理是有很高的学习门槛和时间成本的。

目前,Dask可支持pandasNumpySklearnXGBoostXArrayRAPIDS等等,光是这几项我觉得就足够用了,至少对于常用的数据处理、建模分析是完全覆盖得掉的。
Amway 누구나 Python 빅데이터 분석 결과물을 갖고 있습니다.

3、Dask安装

可以使用 conda 或者 pip,或从源代码安装dask

conda install dask
로그인 후 복사

因为dask有很多依赖,所以为了快速安装也可用下面代码,将安装运行Dask所需的最少依赖关系集。

conda install dask-core
로그인 후 복사

再有就是通过源来安装。

git clone https://github.com/dask/dask.git
cd dask
python -m pip install .
로그인 후 복사

4、Dask如何使用?

Numpy、pandas

Dask引入了3个并行集合,它们可以存储大于RAM的数据,这些集合有DataFrameBagsArrays。这些集合类型中的每一个都能够使用在RAM和硬盘之间分区的数据,以及分布在群集中多个节点上的数据。

Dask的使用是非常清晰的,如果你使用NumPy数组,就从Dask数组开始,如果你使用Pandas DataFrame,就从Dask DataFrame开始,依此类推。

import dask.array as da
x = da.random.uniform(low=0, high=10, size=(10000, 10000),  # normal numpy code
                      chunks=(1000, 1000))  # break into chunks of size 1000x1000

y = x + x.T - x.mean(axis=0)  # Use normal syntax for high level algorithms

# DataFrames
import dask.dataframe as dd
df = dd.read_csv('2018-*-*.csv', parse_dates='timestamp',  # normal Pandas code
                 blocksize=64000000)  # break text into 64MB chunks

s = df.groupby('name').balance.mean()  # Use normal syntax for high level algorithms

# Bags / lists
import dask.bag as db
b = db.read_text('*.json').map(json.loads)
total = (b.filter(lambda d: d['name'] == 'Alice')
          .map(lambda d: d['balance'])
          .sum())
로그인 후 복사

这些高级接口在略微变化的情况下复制了标准接口。对于原始项目中的大部分API,这些接口会自动为我们并行处理较大的数据集,实现上不是很复杂,对照Dask的doc文档即可一步步完成。

Delayed

下面说一下DaskDelay 功能,非常强大。

Dask.delayed是一种并行化现有代码的简单而强大的方法。之所以被叫做delayed是因为,它没有立即计算出结果,而是将要作为任务计算的结果记录在一个图形中,稍后将在并行硬件上运行。

有时问题用已有的dask.arraydask.dataframe可能都不适合,在这些情况下,我们可以使用更简单的dask.delayed

🎜1. 다스크란? 🎜🎜🎜PandasNumpy는 모두에게 친숙합니다. 코드가 실행된 후 데이터 세트가 특히 큰 경우에는 데이터가 RAM에 로드됩니다. 기억이 솟아오른다. 하지만 처리할 데이터가 RAM에 맞지 않는 경우가 있는데, 여기에 Dask가 옵니다. 🎜🎜Dask는 오픈 소스이며 무료입니다. Numpy, Pandas 및 Scikit-Learn과 같은 다른 커뮤니티 프로젝트와 협력하여 개발되었습니다. 🎜
공식: https://dask.org/
🎜DaskPandasDataFrame를 지원합니다. NumpyArray 의 데이터 구조이며 로컬 컴퓨터에서 실행되거나 클러스터에서 실행되도록 확장될 수 있습니다. 🎜🎜기본적으로 코드를 한 번 작성하고 일반 Pythonic 구문을 사용하여 로컬에서 실행하거나 다중 노드 클러스터에 배포하세요. 이것은 그 자체로 멋진 기능이지만 가장 멋진 기능은 아닙니다. 🎜🎜Dask의 가장 멋진 기능은 다음과 같습니다. 🎜우리가 이미 사용하고 있는 대부분의 도구와 호환되며, 약간의 코드 변경만으로 이미 사용하고 있는 도구를 사용할 수 있습니다. 노트북에 코드를 병렬로 실행할 수 있는 처리 능력이 있어야 합니다. 데이터를 병렬로 처리하면 실행 시간과 대기 시간이 줄어들고 분석 시간이 늘어납니다. 🎜🎜🎜다음은 Dask에서 데이터를 처리하는 일반적인 과정입니다.
Amway 누구나 Python 빅데이터 분석 결과물을 갖고 있습니다.🎜 🎜🎜2. Dask는 어떤 기존 도구를 지원하나요? 🎜🎜🎜이것도 제가 좋아하는 점인데, DaskPython 데이터 처리 및 모델링 라이브러리 패키지와 호환되고, 라이브러리 패키지의 API를 따르기 때문입니다. Python에 유용합니다. 사용자의 학습 비용은 매우 낮습니다. HadoopSpark와 같은 빅데이터 처리는 학습 임계값과 시간 비용이 높습니다. 🎜🎜현재 Daskpandas, Numpy, Sklearn, XGBoost를 지원할 수 있습니다. XArray, RAPIDS 등 적어도 일반적인 데이터 처리, 모델링 분석에는 충분하다고 생각합니다.
A4D1FD2BD444 72fee604a99f03976a305.png 🎜 🎜3. Dask 설치🎜🎜🎜conda 또는 pip를 사용하거나 소스 코드에서 dask를 설치할 수 있습니다. 🎜
def inc(x):
    return x + 1

def double(x):
    return x * 2

def add(x, y):
    return x + y

data = [1, 2, 3, 4, 5]

output = []
for x in data:
    a = inc(x)
    b = double(x)
    c = add(a, b)
    output.append(c)

total = sum(output)
45
로그인 후 복사
로그인 후 복사
🎜dask에는 많은 종속성이 있으므로 빠른 설치를 위해 다음 코드를 사용할 수도 있습니다. 그러면 Dask를 실행하는 데 필요한 최소한의 종속성 세트가 설치됩니다. 🎜
import dask

output = []
for x in data:
    a = dask.delayed(inc)(x)
    b = dask.delayed(double)(x)
    c = dask.delayed(add)(a, b)
    output.append(c)

total = dask.delayed(sum)(output)
로그인 후 복사
로그인 후 복사
🎜다른 옵션은 소스에서 설치하는 것입니다. 🎜
total.visualize()
로그인 후 복사
로그인 후 복사
🎜🎜4. Dask를 사용하는 방법은 무엇인가요? 🎜🎜🎜🎜Numpy, pandas🎜🎜🎜Dask에는 RAM보다 큰 데이터를 저장할 수 있는 3개의 병렬 컬렉션이 도입되었습니다. 이러한 컬렉션에는 DataFrame, Bags, <code>배열. 이러한 각 컬렉션 유형은 RAM과 하드 디스크 간에 분할된 데이터는 물론 클러스터의 여러 노드에 분산된 데이터로 작업할 수 있습니다. 🎜🎜Dask의 사용은 매우 명확합니다. NumPy 배열을 사용하는 경우 Pandas DataFrame을 사용하는 경우 시작하세요. , Dask DataFrame으로 시작 등. 🎜
>>> total.compute()
45
로그인 후 복사
로그인 후 복사
🎜이러한 고급 인터페이스는 표준 인터페이스를 약간만 변경하여 복제합니다. 원본 프로젝트에 있는 대부분의 API의 경우 이러한 인터페이스는 자동으로 더 큰 데이터 세트를 병렬로 처리합니다. 구현은 그리 복잡하지 않습니다. Dask 문서를 참조하여 단계별로 완료할 수 있습니다. 코드>. 🎜🎜🎜Delayed🎜🎜🎜 매우 강력한 <code>DaskDelay 기능에 대해 이야기해보겠습니다. 🎜🎜Dask.delayed는 기존 코드를 병렬화하는 간단하고 강력한 방법입니다. 결과를 즉시 계산하지 않고 나중에 병렬 하드웨어에서 실행될 그래프에 작업으로 계산 결과를 기록하기 때문에 지연이라고 합니다. 🎜🎜때때로 기존 dask.array 또는 dask.dataframe이 문제에 적합하지 않을 수 있습니다. 이러한 경우에는 더 간단한 dask Delay인터페이스는 사용자 정의 알고리즘을 병렬화합니다. 다음 예를 예로 들어 보겠습니다. 🎜<div class="code" style="position:relative; padding:0px; margin:0px;"><div class="code" style="position:relative; padding:0px; margin:0px;"><pre class="brush:php;toolbar:false">def inc(x):     return x + 1 def double(x):     return x * 2 def add(x, y):     return x + y data = [1, 2, 3, 4, 5] output = [] for x in data:     a = inc(x)     b = double(x)     c = add(a, b)     output.append(c) total = sum(output) 45</pre><div class="contentsignin">로그인 후 복사</div></div><div class="contentsignin">로그인 후 복사</div></div> <p>上面代码在单个线程中按顺序运行。但是,我们看到其中很多可以并行执行。<code>Dask delayed函数可修饰incdouble这些函数,以便它们可延迟运行,而不是立即执行函数,它将函数及其参数放入计算任务图中。

我们简单修改代码,用delayed函数包装一下。

import dask

output = []
for x in data:
    a = dask.delayed(inc)(x)
    b = dask.delayed(double)(x)
    c = dask.delayed(add)(a, b)
    output.append(c)

total = dask.delayed(sum)(output)
로그인 후 복사
로그인 후 복사

代码运行后incdoubleaddsum都还没有发生,而是生成一个计算的任务图交给了total。然后我们用visualizatize看下任务图。

total.visualize()
로그인 후 복사
로그인 후 복사

Amway 누구나 Python 빅데이터 분석 결과물을 갖고 있습니다.

上图明显看到了并行的可能性,所以毫不犹豫,使用compute进行并行计算,这时才完成了计算。

>>> total.compute()
45
로그인 후 복사
로그인 후 복사

由于数据集较小无法比较时间,这里只介绍下使用方法,具体可自己动手实践下。

Sklearn机器学习

关于机器学习的并行化执行,由于内容较多,东哥会在另一篇文章展开。这里简单说下一下dask-learn

dask-learn项目是与Sklearn开发人员协作完成的。现在可实现并行化有Scikit-learnPipelineGridsearchCVRandomSearchCV以及这些的变体,它们可以更好地处理嵌套的并行操作。

因此,如果你将sklearn替换为dklearn,那么速度将会提升很多。

# from sklearn.grid_search import GridSearchCV
  from dklearn.grid_search import GridSearchCV
# from sklearn.pipeline import Pipeline
  from dklearn.pipeline import Pipeline
下面是一个使用Pipeline的示例,其中应用了PCA和逻辑回归。
from sklearn.datasets import make_classification

X, y = make_classification(n_samples=10000,
                           n_features=500,
                           n_classes=2,
                           n_redundant=250,
                           random_state=42)

from sklearn import linear_model, decomposition
from sklearn.pipeline import Pipeline
from dklearn.pipeline import Pipeline

logistic = linear_model.LogisticRegression()
pca = decomposition.PCA()
pipe = Pipeline(steps=[('pca', pca),
                       ('logistic', logistic)])


grid = dict(pca__n_components=[50, 100, 150, 250],
            logistic__C=[1e-4, 1.0, 10, 1e4],
            logistic__penalty=['l1', 'l2'])

# from sklearn.grid_search import GridSearchCV
from dklearn.grid_search import GridSearchCV

estimator = GridSearchCV(pipe, grid)

estimator.fit(X, y)
로그인 후 복사

结果是:sklearn会在40秒钟左右执行此计算,而dask-learn替代品大约需要10秒钟。
另外,如果添加以下代码可以连接到集群,通过Client可以展示整个计算过程的dashboard,由Bokeh实现。

from dask.distributed import Client
c = Client('scheduler-address:8786')
로그인 후 복사

Amway 누구나 Python 빅데이터 분석 결과물을 갖고 있습니다.

5、总结

以上就是Dask的简单介绍,Dask的功能是非常强大的,且说明文档也非常全,既有示例又有解释。感兴趣的朋友可以自行去官网或者GitHub学习,东哥下次分享使用Dask进行机器学习的一些实例。

위 내용은 Amway 누구나 Python 빅데이터 분석 결과물을 갖고 있습니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

PHP 및 Python : 코드 예제 및 비교 PHP 및 Python : 코드 예제 및 비교 Apr 15, 2025 am 12:07 AM

PHP와 Python은 고유 한 장점과 단점이 있으며 선택은 프로젝트 요구와 개인 선호도에 달려 있습니다. 1.PHP는 대규모 웹 애플리케이션의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 데이터 과학 및 기계 학습 분야를 지배합니다.

Python vs. JavaScript : 커뮤니티, 라이브러리 및 리소스 Python vs. JavaScript : 커뮤니티, 라이브러리 및 리소스 Apr 15, 2025 am 12:16 AM

Python과 JavaScript는 커뮤니티, 라이브러리 및 리소스 측면에서 고유 한 장점과 단점이 있습니다. 1) Python 커뮤니티는 친절하고 초보자에게 적합하지만 프론트 엔드 개발 리소스는 JavaScript만큼 풍부하지 않습니다. 2) Python은 데이터 과학 및 기계 학습 라이브러리에서 강력하며 JavaScript는 프론트 엔드 개발 라이브러리 및 프레임 워크에서 더 좋습니다. 3) 둘 다 풍부한 학습 리소스를 가지고 있지만 Python은 공식 문서로 시작하는 데 적합하지만 JavaScript는 MDNWebDocs에서 더 좋습니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

터미널 VSCODE에서 프로그램을 실행하는 방법 터미널 VSCODE에서 프로그램을 실행하는 방법 Apr 15, 2025 pm 06:42 PM

vs 코드에서는 다음 단계를 통해 터미널에서 프로그램을 실행할 수 있습니다. 코드를 준비하고 통합 터미널을 열어 코드 디렉토리가 터미널 작업 디렉토리와 일치하는지 확인하십시오. 프로그래밍 언어 (예 : Python의 Python Your_file_name.py)에 따라 실행 명령을 선택하여 성공적으로 실행되는지 여부를 확인하고 오류를 해결하십시오. 디버거를 사용하여 디버깅 효율을 향상시킵니다.

Python에서 비주얼 스튜디오 코드를 사용할 수 있습니다 Python에서 비주얼 스튜디오 코드를 사용할 수 있습니다 Apr 15, 2025 pm 08:18 PM

VS 코드는 파이썬을 작성하는 데 사용될 수 있으며 파이썬 애플리케이션을 개발하기에 이상적인 도구가되는 많은 기능을 제공합니다. 사용자는 다음을 수행 할 수 있습니다. Python 확장 기능을 설치하여 코드 완료, 구문 강조 및 디버깅과 같은 기능을 얻습니다. 디버거를 사용하여 코드를 단계별로 추적하고 오류를 찾아 수정하십시오. 버전 제어를 위해 git을 통합합니다. 코드 서식 도구를 사용하여 코드 일관성을 유지하십시오. 라인 도구를 사용하여 잠재적 인 문제를 미리 발견하십시오.

Docker 원리에 대한 자세한 설명 Docker 원리에 대한 자세한 설명 Apr 14, 2025 pm 11:57 PM

Docker는 Linux 커널 기능을 사용하여 효율적이고 고립 된 응용 프로그램 실행 환경을 제공합니다. 작동 원리는 다음과 같습니다. 1. 거울은 읽기 전용 템플릿으로 사용되며, 여기에는 응용 프로그램을 실행하는 데 필요한 모든 것을 포함합니다. 2. Union 파일 시스템 (Unionfs)은 여러 파일 시스템을 스택하고 차이점 만 저장하고 공간을 절약하고 속도를 높입니다. 3. 데몬은 거울과 컨테이너를 관리하고 클라이언트는 상호 작용을 위해 사용합니다. 4. 네임 스페이스 및 CGroup은 컨테이너 격리 및 자원 제한을 구현합니다. 5. 다중 네트워크 모드는 컨테이너 상호 연결을 지원합니다. 이러한 핵심 개념을 이해 함으로써만 Docker를 더 잘 활용할 수 있습니다.

VScode 확장자가 악의적입니까? VScode 확장자가 악의적입니까? Apr 15, 2025 pm 07:57 PM

VS 코드 확장은 악의적 인 코드 숨기기, 취약성 악용 및 합법적 인 확장으로 자위하는 등 악성 위험을 초래합니다. 악의적 인 확장을 식별하는 방법에는 게시자 확인, 주석 읽기, 코드 확인 및주의해서 설치가 포함됩니다. 보안 조치에는 보안 인식, 좋은 습관, 정기적 인 업데이트 및 바이러스 백신 소프트웨어도 포함됩니다.

Windows 8에서 코드를 실행할 수 있습니다 Windows 8에서 코드를 실행할 수 있습니다 Apr 15, 2025 pm 07:24 PM

VS 코드는 Windows 8에서 실행될 수 있지만 경험은 크지 않을 수 있습니다. 먼저 시스템이 최신 패치로 업데이트되었는지 확인한 다음 시스템 아키텍처와 일치하는 VS 코드 설치 패키지를 다운로드하여 프롬프트대로 설치하십시오. 설치 후 일부 확장은 Windows 8과 호환되지 않을 수 있으며 대체 확장을 찾거나 가상 시스템에서 새로운 Windows 시스템을 사용해야합니다. 필요한 연장을 설치하여 제대로 작동하는지 확인하십시오. Windows 8에서는 VS 코드가 가능하지만 더 나은 개발 경험과 보안을 위해 새로운 Windows 시스템으로 업그레이드하는 것이 좋습니다.

파이썬 : 자동화, 스크립팅 및 작업 관리 파이썬 : 자동화, 스크립팅 및 작업 관리 Apr 16, 2025 am 12:14 AM

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

See all articles