파이썬 큐 관련 애플리케이션과 실습을 함께 분석해 볼까요?
이 글에서는 python에 대한 관련 지식을 제공합니다. 이 글에서는 두 개의 스택을 사용하여 큐를 구현하는 방법, 두 개의 큐를 사용하여 스택을 구현하는 방법, 스택 등 큐 관련 응용 연습을 주로 소개합니다. 요소의 연속성 판단, 등 모든 분들께 도움이 되었으면 좋겠습니다.
추천 학습: python 튜토리얼
0. 학습 목표
우리는 대기열의 관련 개념과 구현을 배웠고 실제 문제에서 대기열의 광범위한 적용도 이해했습니다. 대기열 관련 연습을 통해 대기열에 대한 이해를 더욱 심화시키는 동시에 대기열을 사용하여 일부 복잡한 문제를 해결하는 데 소요되는 시간 복잡성을 줄일 수 있습니다.
1. 두 개의 스택을 사용하여 대기열을 구현합니다
[질문] 두 개의 스택이 주어지면 스택의 기본 연산만 사용하여 대기열을 구현합니다.
[아이디어] 이 문제를 해결하는 열쇠는 스택의 반전 기능에 있습니다. 스택에 푸시된 일련의 요소는 스택에서 팝될 때 역순으로 반환됩니다. 따라서 두 개의 스택을 사용하면 동일한 순서로 요소를 반환할 수 있습니다. 요소의 역순은 원래 순서를 얻기 위해 다시 역순으로 이루어집니다. 구체적인 작업은 아래 그림에 나와 있습니다.
[알고리즘]
Enqueue
enqueue
:
요소를 스택에 푸시stack_1
queue
대기열에서 제거:
stack_2
스택이 비어 있지 않은 경우:
stack_2
대기열에서 최상위 요소 팝 스택
그렇지 않은 경우:
stack_1
에서 모든 요소를 팝하고stack_2
로 푸시
stack_2
스택의 최상위 요소를 팝합니다enqueue
:
将元素推入栈stack_1
出队dequeue
:
如果栈stack_2
不为空:
stack_2
栈顶元素出栈
否则:
将所有元素依次从stack_1
弹出并压入stack_2
stack_2
栈顶元素出栈
[代码]
class Queue: def __init__(self): self.stack_1 = Stack() self.stack_2 = Stack() def enqueue(self, data): self.stack_1.push(data) def dequeue(self): if self.stack_2.isempty(): while not self.stack_1.isempty(): self.stack_2.push(self.stack_1.pop()) return self.stack_2.pop()
[时空复杂度] 入队时间复杂度为 O(1),如果栈 stack_2
不为空,那么出队的时间复杂度为 O(1),如果栈 stack_2
为空,则需要将元素从 stack_1
转移到 stack_2
,但由于 stack_2
中转移的元素数量和出队的元素数量是相等的,因此出队的摊销时间复杂度为 O(1)。
2. 파이썬 큐 관련 애플리케이션과 실습을 함께 분석해 볼까요?
[问题] 给定两个队列,仅使用队列的基本操作实现一个栈。
[思路] 由于队列并不具备反转顺序的特性,入队顺序即为元素的出队顺序。因此想要获取最后一个入队的元素,需要首先将之前所有元素出队。因此为了使用两个队列实现栈,我们需要将其中一个队列 store_queue
用于存储元素,另一个队列 temp_queue
则用来保存为了获取最后一个元素而保存临时出队的元素。push
操作将给定元素入队到存储队列 store_queue
中;pop
操作首先把存储队列 store_queue
中除最后一个元素外的所有元素都转移到临时队列 temp_queue
中,然后存储队列 store_queue
[Code]
class Stack: def __init__(self): self.queue_1 = Queue() self.queue_2 = Queue() def isempty(self): return self.queue_1.isempty() and self.queue_2.isempty() def push(self, data): if self.queue_2.isempty(): self.queue_1.enqueue(data) else: self.queue_2.enqueue(data) def pop(self): if self.isempty(): raise IndexError("Stack is empty") elif self.queue_2.isempty(): while not self.queue_1.isempty(): p = self.queue_1.dequeue() if self.queue_1.isempty(): return p self.queue_2.enqueue(p) else: while not self.queue_2.isempty(): p = self.queue_2.dequeue() if self.queue_2.isempty(): return p self.queue_1.enqueue(p)
[Time and Space Complexity] 대기열에 넣기의 시간 복잡도는 O(1) , stack_2
스택이 비어 있지 않은 경우 대기열 제거의 시간 복잡도는 입니다. O(1) span> stack_2
스택이 비어 있으므로 요소를 stack_1
에서 stack_2
로 전송해야 하지만 stack_2
에 전송된 요소 수와 대기열에서 제거된 요소의 수가 동일하므로 대기열 제거의 분할 시간 복잡도는 O (1).
store_queue
대기열 중 하나를 사용하여 요소를 저장하고 다른 대기열 temp_queue
를 사용하여 요소를 저장해야 합니다. 일시적으로 대기열에서 제거된 요소를 가져옵니다. push
작업은 지정된 요소를 저장소 대기열 store_queue
에 추가합니다. pop
작업은 먼저 지정된 요소를 저장소 대기열 store_queue에 대기열에 추가합니다.
마지막 요소를 제외한 모든 요소는 임시 대기열 temp_queue
로 전송된 다음 저장 대기열 store_queue
의 마지막 요소가 대기열에서 제거되어 반환됩니다. 구체적인 작업은 아래 그림과 같습니다. 🎜🎜🎜🎜🎜🎜[알고리즘]🎜🎜算法运行过程需要始终保持其中一个队列为空,用作临时队列
入栈push
:在非空队列中插入元素data
。
若队列queue_1
为空:
将data
插入 队列queue_2
中
否则:
将data
插入 队列queue_1
中
出栈pop
:将队列中的前n−1 个元素插入另一队列,删除并返回最后一个元素
若队列queue_1
不为空:
将队列queue_1
的前n−1 个元素插入queue_2
,然后queue_1
的最后一个元素出队并返回
若队列queue_2
不为空:
将队列queue_2
的前 n−1 个元素插入queue_1
,然后queue_2
的最后一个元素出队并返回
[代码]
class Stack: def __init__(self): self.queue_1 = Queue() self.queue_2 = Queue() def isempty(self): return self.queue_1.isempty() and self.queue_2.isempty() def push(self, data): if self.queue_2.isempty(): self.queue_1.enqueue(data) else: self.queue_2.enqueue(data) def pop(self): if self.isempty(): raise IndexError("Stack is empty") elif self.queue_2.isempty(): while not self.queue_1.isempty(): p = self.queue_1.dequeue() if self.queue_1.isempty(): return p self.queue_2.enqueue(p) else: while not self.queue_2.isempty(): p = self.queue_2.dequeue() if self.queue_2.isempty(): return p self.queue_1.enqueue(p)
[时空复杂度] push
操作的时间复杂度为O(1),由于 pop
操作时,都需要将所有元素从一个队列转移到另一队列,因此时间复杂度O(n)。
3. 栈中元素连续性判断
[问题] 给定一栈 stack1
,栈中元素均为整数,判断栈中每对连续的数字是否为连续整数(如果栈有奇数个元素,则排除栈顶元素)。例如,输入栈 [1, 2, 5, 6, -5, -4, 11, 10, 55]
,输入为 True
,因为排除栈顶元素 55
后,(1, 2)
、(5, 6)
、(-5, -4)
、(11, 10)
均为连续整数。
[思路] 由于栈中可能存在奇数个元素,因此为了正确判断,首次需要将栈中元素反转,栈顶元素变为栈底,然后依次出栈,进行判断。
[算法]
栈
stack
中所有元素依次出栈,并插入队列queue
中
队列queue
中所有元素出队,并入栈stack
while 栈stack
不为空:
栈顶元素e1
出栈,并插入队列queue
中
如果栈stack
不为空:
栈顶元素e2
出栈,并插入队列queue
中
如果|e1-e2|!=1
:
返回False
,跳出循环
队列queue
中所有元素出队,并入栈stack
[代码]
def check_stack_pair(stack): queue = Queue() flag = True # 反转栈中元素 while not stack.isempty(): queue.enqueue(stack.pop()) while not queue.isempty(): stack.push(queue.dequeue()) while not stack.isempty(): e1 = stack.pop() queue.enqueue(e1) if not stack.isempty(): e2 = stack.pop() queue.enqueue(e2) if abs(e1-e2) != 1: flag = False break while not queue.isempty(): stack.push(queue.dequeue()) return flag
[时空复杂度] 时间复杂度为 O(n),空间复杂度为 O(n)。
4. 파이썬 큐 관련 애플리케이션과 실습을 함께 분석해 볼까요?
[问题] 给定一个整数队列 queue
,将队列的前半部分与队列的后半部分交错来重新排列元素。例如输入队列为 [1, 2, 3, 4, 5, 6, 7, 8, 9]
,则输出应为 [1, 6, 2, 7, 3, 8, 4, 9, 5]
。
[思路] 通过获取队列的前半部分,然后利用栈的反转特性,可以实现重排操作,如下图所示:
[算法]
如果队列
queue
中的元素数为偶数:
half=queue.size//2
否则:
half=queue.size//2+1
1. 将队列queue
的前半部分元素依次出队并入栈stack
2. 栈stack
中元素出栈并入队queue
3. 将队列queue
中在步骤 1
中未出队的另一部分元素依次出队并插入队尾
4. 将队列queue
的前半部分元素依次出队并入栈stack
5. 将栈stack
和队列queue
中的元素交替弹出并入队
6. 如果栈stack
非空:
栈stack
中元素出栈并入队
[代码]
def queue_order(queue): stack = Stack() size = queue.size if size % 2 == 0: half = queue.size//2 else: half = queue.size//2 + 1 res = queue.size - half for i in range(half): stack.push(queue.dequeue()) while not stack.isempty(): queue.enqueue(stack.pop()) for i in range(res): queue.enqueue(queue.dequeue()) for i in range(half): stack.push(queue.dequeue()) for i in range(res): queue.enqueue(stack.pop()) queue.enqueue(queue.dequeue()) if not stack.isempty(): queue.enqueue(stack.pop())
[时空复杂度] 时间复杂度为O(n),空间复杂度为 O(n)。
5. 反转队列中前 m 个元素的顺序
[问题] 给定一个整数 m
和一个整数队列 queue
,反转队列中前 k 个元素的顺序,而其他元素保持不变。如 m=5
,队列为 [1, 2, 3, 4, 5, 6, 7, 8, 9]
,算法输出为 [5, 4, 3, 2, 1, 6, 7, 8, 9]
。
[思路] 结合 [问题4] 我们可以发现,此题就是 [问题4] 的前 3
步,如下图所示:
[算法]
1. 将队列
queue
的前m
个元素依次出队并入栈stack
2. 栈stack
中元素出栈并入队queue
3. 将队列queue
中在步骤 1
中未出队的另一部分元素依次出队并插入队尾
[代码]
def reverse_m_element(queue, m): stack = Stack() size = queue.size if queue.isempty() or m>size: return for i in range(m): stack.push(queue.dequeue()) while not stack.isempty(): queue.enqueue(stack.pop()) for i in range(size-m): queue.enqueue(queue.dequeue())
[时空复杂度] 时间复杂度为O(n),空间复杂度为 O(n)。
추천 학습: python 튜토리얼
위 내용은 파이썬 큐 관련 애플리케이션과 실습을 함께 분석해 볼까요?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

해시 값으로 저장되기 때문에 MongoDB 비밀번호를 Navicat을 통해 직접 보는 것은 불가능합니다. 분실 된 비밀번호 검색 방법 : 1. 비밀번호 재설정; 2. 구성 파일 확인 (해시 값이 포함될 수 있음); 3. 코드를 점검하십시오 (암호 하드 코드 메일).

데이터 전문가는 다양한 소스에서 많은 양의 데이터를 처리해야합니다. 이것은 데이터 관리 및 분석에 어려움을 겪을 수 있습니다. 다행히도 AWS Glue와 Amazon Athena의 두 가지 AWS 서비스가 도움이 될 수 있습니다.

Redis 서버를 시작하는 단계에는 다음이 포함됩니다. 운영 체제에 따라 Redis 설치. Redis-Server (Linux/MacOS) 또는 Redis-Server.exe (Windows)를 통해 Redis 서비스를 시작하십시오. Redis-Cli Ping (Linux/MacOS) 또는 Redis-Cli.exe Ping (Windows) 명령을 사용하여 서비스 상태를 확인하십시오. Redis-Cli, Python 또는 Node.js와 같은 Redis 클라이언트를 사용하여 서버에 액세스하십시오.

Redis의 대기열을 읽으려면 대기열 이름을 얻고 LPOP 명령을 사용하여 요소를 읽고 빈 큐를 처리해야합니다. 특정 단계는 다음과 같습니다. 대기열 이름 가져 오기 : "큐 :"와 같은 "대기열 : my-queue"의 접두사로 이름을 지정하십시오. LPOP 명령을 사용하십시오. 빈 대기열 처리 : 대기열이 비어 있으면 LPOP이 NIL을 반환하고 요소를 읽기 전에 대기열이 존재하는지 확인할 수 있습니다.

질문 : Redis 서버 버전을 보는 방법은 무엇입니까? 명령 줄 도구 Redis-Cli를 사용하여 연결된 서버의 버전을보십시오. 정보 서버 명령을 사용하여 서버의 내부 버전을보고 정보를 구문 분석하고 반환해야합니다. 클러스터 환경에서 각 노드의 버전 일관성을 확인하고 스크립트를 사용하여 자동으로 확인할 수 있습니다. 스크립트를 사용하여 Python 스크립트와 연결 및 인쇄 버전 정보와 같은보기 버전을 자동화하십시오.

Navicat의 비밀번호 보안은 대칭 암호화, 암호 강도 및 보안 측정의 조합에 의존합니다. 특정 측정에는 다음이 포함됩니다. SSL 연결 사용 (데이터베이스 서버가 인증서를 지원하고 올바르게 구성하는 경우), 정기적으로 Navicat을 업데이트하고보다 안전한 방법 (예 : SSH 터널), 액세스 권한 제한 및 가장 중요한 것은 암호를 기록하지 않습니다.
