멀티스레딩 및 스레드 동기화를 달성하는 Java 클래식 기술
이 글은 핵심 클래스 라이브러리에서 주로 멀티스레딩과 스레드 동기화와 관련된 문제를 소개하는 java에 대한 관련 지식을 함께 살펴보겠습니다.
추천 학습: "java 비디오 튜토리얼"
1 Multi-threading
1.1 Process
-
Process: 실행 중인 프로그램입니다
- 자원 할당 및 독립된 단위 of call
- 각 프로세스에는 고유한 메모리 공간과 시스템 리소스가 있습니다
-
프로세스의 세 가지 특징
- 독립성: 프로세스는 서로 독립적이며 자체 메모리 영역을 갖습니다.
- 동적: 프로세스는 메모리, CPU 및 네트워크와 같은 리소스를 동적으로 점유하는 실행 프로그램입니다.
- 동시성: CPU 시간 공유 폴링 전환. 전환 속도가 매우 빠르기 때문에 동시에 실행되는 느낌을 주기 때문에 각 프로세스를 차례로 제공합니다. 이것이 동시성(동시성: 동시에 여러 실행)입니다.
: 프로세스의 단일 순차 제어 흐름, 실행 경로입니다싱글 스레드: 프로세스에 실행 경로가 하나만 있습니다
- 멀티 스레딩: 프로세스에 여러 개의 실행 경로가 있습니다
-
- 1.3 멀티스레딩 구현
1.3.1 방법 1: Tread 클래스 상속
프로세스 :
- 1. MyTread 클래스를 정의하여 Tread 클래스를 상속합니다. 2. 에서 MyTread 클래스
-
3의
run()
메서드를 재정의합니다. MyTread 클래스4의 개체를 만듭니다.void start()
- run() 메소드를 작성하는 것이 왜 중요한가요?
run()
方法 - 3、创建MyTread类的对象
- 4、启动线程:
void start()
-
为什么要重写run()方法?
- 因为run()是用来封装被线程执行的代码
-
run()方法和start()方法的区别?
- run():封装线程执行的代码,直接调用,相当于普通方法的的调用
- start():启动线程,然后由JVM调用此线程中的run()方法
范例
MyTread类:
package test;//1、定义一类MyTread继承Tread类public class MyThread extends Thread{ 2、在MyTread类中重写run()方法 @Override public void run() { for(int i=0;i
- 测试类
package test;public class Demo { public static void main(String[] args) { //3、创建MyTread类的对象 MyThread my1 = new MyThread(); MyThread my2 = new MyThread(); //4、启动线程:void start():启动线程,由Java虚拟机调用此线程的run()方法 my1.start(); my2.start(); }}
1.3.2 方式2:实现Runnable接口
-
流程:
- 1、定义一个MyRunnable类实现Runnable接口
- 2、在MyRunnable类中重写
run()
- run()은 스레드에 의해 실행되는 코드를 캡슐화하는 데 사용되기 때문입니다.
- run() 메서드와 start() 메서드의 차이점은 무엇인가요?
- run(): 스레드에 의해 실행되는 코드를 캡슐화하고 이를 직접 호출합니다. 이는 일반 메서드를 호출하는 것과 같습니다.
- start(): 스레드를 시작한 다음 JVM이 여기에서 run() 메서드를 호출합니다.
예
MyTread 클래스:
package test;public class Demo {
public static void main(String[] args) {
//3、创建MyRunnable类的对象
MyRunnable mr = new MyRunnable();
//4、创建Tread类的对象,把MyRunnable对象作为构造方法的参数// Thread t1 = new Thread(mr);// Thread t2 = new Thread(mr);
//Thread(Runnable target,String name)
Thread t1 = new Thread(mr,"高铁");
Thread t2 = new Thread(mr,"飞机");
//5、启动线程
t1.start();
t2.start();
}}
로그인 후 복사
테스트 클래스package test;public class Demo { public static void main(String[] args) { //3、创建MyRunnable类的对象 MyRunnable mr = new MyRunnable(); //4、创建Tread类的对象,把MyRunnable对象作为构造方法的参数// Thread t1 = new Thread(mr);// Thread t2 = new Thread(mr); //Thread(Runnable target,String name) Thread t1 = new Thread(mr,"高铁"); Thread t2 = new Thread(mr,"飞机"); //5、启动线程 t1.start(); t2.start(); }}
package test;public class MyThread extends Thread{ //构造方法添加线程名称 public MyThread(){} public MyThread(String name) { super(name); } @Override public void run() { for(int i=0;i<strong></strong>1.3.2 방법 2: 실행 가능한 인터페이스 구현
로그인 후 복사
: | 1. 정의합니다. MyRunnable 클래스 Runnable 인터페이스 구현 |
---|---|
4. MyRunnable 객체를 생성자의 매개변수로 사용합니다. | 5. 스레드 시작 |
이점: | Java 단일 상속의 제한을 피하세요 |
package test;public class Demo { public static void main(String[] args) { /* MyThread my1 = new MyThread(); MyThread my2 = new MyThread(); //2,void setName(Stringname) 将此线程的名称更改为等于参数name my1.setName("高铁"); my2.setName("飞机");*/ //3,通过构造方法设置线程名称 //需要自己定义的类中提供此带参构造方法,并通过super访问父类带参构造方法 /*MyThread my1 = new MyThread("高铁"); MyThread my2 = new MyThread("飞机"); my1.start(); my2.start();*/ //4,public static Thread currentThread() 返回对当前正在执行的线程对象的引用(可以返回main()方法中线程) System.out.println(Tread.currentThread().getName()); //main }} 로그인 후 복사 로그인 후 복사 |
|
1.4 스레드 이름 설정 및 가져오기 | |
Thread 클래스에서 스레드 이름을 설정하고 가져오는 메서드 |
- MyThread类
package test;public class MyThread extends Thread{ //构造方法添加线程名称 public MyThread(){} public MyThread(String name) { super(name); } @Override public void run() { for(int i=0;i
- 测试类
package test;public class Demo { public static void main(String[] args) { /* MyThread my1 = new MyThread(); MyThread my2 = new MyThread(); //2,void setName(Stringname) 将此线程的名称更改为等于参数name my1.setName("高铁"); my2.setName("飞机");*/ //3,通过构造方法设置线程名称 //需要自己定义的类中提供此带参构造方法,并通过super访问父类带参构造方法 /*MyThread my1 = new MyThread("高铁"); MyThread my2 = new MyThread("飞机"); my1.start(); my2.start();*/ //4,public static Thread currentThread() 返回对当前正在执行的线程对象的引用(可以返回main()方法中线程) System.out.println(Tread.currentThread().getName()); //main }}
1.5 线程调度
-
线程有两种调度模型
- 分时调度模型:所有线程轮流使用CPU的使用权,平均分配每个线程占用CPU的时间片
- 抢占式调度模型:优先让优先级高的线程使用CPU,如果线程的优先级相同,那么会随机选择一个,优先级高的线程获取的CPU时间片相对多一些
Java使用的是抢占式调度模型
假如计算机只有一个CPU, 那么CPU在某一个时刻只能执行条指令, 线程只有得到CPU时间片,也就是使用权,才可以执行指令。所以说多线程程序的执行是有随机性,因为谁抢到CPU的使用权是不一定的
Thread类中设置和获取线程优先级的方法
方法名 | 说明 |
---|---|
public final int getPriority() [praɪˈɔːrəti] | 返回此线程的优先级 |
public final void setPriority(int newPriority) | 更改此线程的优先级 |
- 线程默认优先级是5;线程优先级范围是:1-10
- 线程优先级高仅仅表示线程获取的CPU时间的几率高,但是要在次数比较多,或者多次运行的时候才能看到你想要的效果
package test;public class Demo { public static void main(String[] args) { ThreadPriority tp1 = new ThreadPriority(); ThreadPriority tp2 = new ThreadPriority(); ThreadPriority tp3 = new ThreadPriority(); tp1.setName("高铁"); tp2.setName("飞机"); tp3.setName("汽车"); //1,public final int getPriority() [praɪˈɔːrəti] 返回此线程的优先级// System.out.println(tp1.getPriority()); //5// System.out.println(tp2.getPriority()); //5// System.out.println(tp3.getPriority()); //5 //2,public final void setPriority(int newPriority) 更改此线程的优先级 System.out.println(Thread.MAX_PRIORITY); //10 System.out.println(Thread.MIN_PRIORITY); //1 System.out.println(Thread.NORM_PRIORITY); //5 //设置正确优先级 tp1.setPriority(5); tp2.setPriority(10); tp3.setPriority(1); tp1.start(); tp2.start(); tp3.start(); }}
1.6 线程控制
方法名 | 说明 |
---|---|
static void sleep(long millis) | 使当前正在执行的线程停留(暂停执行)指定的毫秒数 |
void join() | 等待这个线程死亡 |
void setDaemon(boolean on) [ˈdiːmən] | 将此线程标记为守护线程,当运行的线程都是守护线程时,Java虚拟机很快将退出 (并不是立刻退出) |
案例:sleep()方法
- 线程类
package test;public class ThreadSleep extends Thread{ @Override public void run() { for(int i=0;i
- 测试类
package test;public class Demo { public static void main(String[] args) { ThreadSleep ts1 = new ThreadSleep(); ThreadSleep ts2 = new ThreadSleep(); ThreadSleep ts3 = new ThreadSleep(); ts1.setName("曹操"); ts2.setName("刘备"); ts3.setName("孙权"); ts1.start(); ts2.start(); ts3.start();// 曹操:0// 孙权:0// 刘备:0// 孙权:1// 曹操:1// 刘备:1// ... }}
案例:join()方法
package test;public class Demo { public static void main(String[] args) { ThreadJoin tj1 = new ThreadJoin(); ThreadJoin tj2 = new ThreadJoin(); ThreadJoin tj3 = new ThreadJoin(); tj1.setName("康熙"); tj2.setName("四阿哥"); tj3.setName("八阿哥"); tj1.start(); //2,void join() 等待这个线程死亡 try { tj1.join(); } catch (InterruptedException e) { e.printStackTrace(); } tj2.start(); tj3.start();// 康熙:0// 康熙:1// 康熙:2// 四阿哥:0// 四阿哥:1// 八阿哥:0// 八阿哥:1// 八阿哥:2// 四阿哥:2// ... }}
案例:setDaemon()方法
package test;public class Demo { public static void main(String[] args) { ThreadJoin tj1 = new ThreadJoin(); ThreadJoin tj2 = new ThreadJoin(); ThreadJoin tj3 = new ThreadJoin(); tj2.setName("关羽"); tj3.setName("张飞"); //设置主线程为刘备 Thread.currentThread().setName("刘备"); //3,void setDaemon(boolean on) 将此线程标记为守护线程,当运行的线程都是守护线程时,Java虚拟机将退出 tj1.setDaemon(true); tj2.setDaemon(true); tj1.start(); tj2.start(); for(int i=0;i<h3 id="strong-线程生命周期-strong"><strong>1.7 线程生命周期</strong></h3><p><img src="/static/imghw/default1.png" data-src="https://img.php.cn/upload/article/000/000/067/331836944d1895cfc26297fee263339c-0.png" class="lazy" alt="멀티스레딩 및 스레드 동기화를 달성하는 Java 클래식 기술"></p><h3 id="strong-数据安全问题之案例-买票-strong"><strong>1.8 数据安全问题之案例:买票</strong></h3><p><img src="/static/imghw/default1.png" data-src="https://img.php.cn/upload/article/000/000/067/331836944d1895cfc26297fee263339c-1.png" class="lazy" alt="멀티스레딩 및 스레드 동기화를 달성하는 Java 클래식 기술"><br><img src="/static/imghw/default1.png" data-src="https://img.php.cn/upload/article/000/000/067/331836944d1895cfc26297fee263339c-2.png" class="lazy" alt="멀티스레딩 및 스레드 동기화를 달성하는 Java 클래식 기술"></p>
-
为什么出现问题?(这也是我们判断多线程程序是否会有数据安全问题的标准)
- 是否是多线程环境
- 是否有共享数据
- 是否有多条语句操作共享数据
如何解决多线程安全问题呢?
基本思想:让程序没有安全问题的环境
-
怎么实现呢?
- 把多条语句操作共享 数据的代码给锁起来,让任意时刻只能有一一个线程执行即可
- Java提供 了同步代码块的方式来解决
1.9 线程同步_同步代码块
- 锁多条语句操作共享数据,可以使用同步代码块实现
- 格式
synchronized(任意对象) { 多条语句操作共享数据的代码}
好处:让多个线程实现先后依次访问共享资源,解决了多线程的数据安全问题
弊端:当线程很多的时候,因为每个线程都会去判断同步上的锁,这是很消耗资源的,无形中降低程序的运行效率
sellTicket类
package test;//1,定义一个类SellTicket实现Runnable接口,里面定义一个成员变量: private int tickets= 100;public class SellTicket implements Runnable{ private int tickets = 100; private Object obj = new Object(); //2,在ellTicket类中重写run0方法实现卖票, 代码步骤如下 @Override public void run() { while(true) { //tickes=100 //t1,t2,t3 //假设t1抢到CPU执行器 synchronized (obj){ //t1进来后把代码锁起来了 if (tickets > 0) { try { Thread.sleep(100); //t1休息100毫秒 } catch (InterruptedException e) { e.printStackTrace(); } //窗口1正在出售第100张票 System.out.println(Thread.currentThread().getName() + "正在出售第" + tickets + "张票"); tickets--; //tickets=99 } //t1出来了,锁就被释放了 } } }}
- 测试类
package test;public class SellTicketDemo { public static void main(String[] args) { //创建SellTicket类的对象 SellTicket st = new SellTicket(); //创建三个Thread类的对象,把SellTicket对象作为构造方法的参数,并给出对应的窗口名称 Thread t1 = new Thread(st,"窗口1"); Thread t2 = new Thread(st,"窗口2"); Thread t3 = new Thread(st,"窗口3"); //启动线程 t1.start(); t2.start(); t3.start(); }}
1.10 线程同步_同步方法
- 作用:把出现线程安全问题的核心方法给锁起来,每次只能一个线程进入访问,其他线程必须在方法外面等待
-
同步方法:就是把synchronized关键字加到方法上;锁对象为:
this
- 格式:
修饰符 synchronized 返回值类型 方法名(方法参数) {}
- 格式:
-
同步静态方法:就是把synchronized关键字加到静态方法上面;锁对象为:
类名.class
- 格式:
修饰符 static synchronized 返回值类型 方法名(方法参数) {}
- 格式:
package test;public class SellTicket implements Runnable{//1非静态 private int tickets = 100; private static int tickets = 100; private Object obj = new Object(); private int x = 0; @Override public void run() { while(true) { if(x%2==0) {//1非静态 synchronized (this) { synchronized (SellTicket.class) { if (tickets > 0) { try { Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName() + "正在出售第" + tickets + "张票"); tickets--; //tickets=99 } } } else {// synchronized (obj) {// if (tickets > 0) {// try {// Thread.sleep(100);// } catch (InterruptedException e) {// e.printStackTrace();// }// System.out.println(Thread.currentThread().getName() + "正在出售第" + tickets + "张票");// tickets--; //tickets=99// }// } sellTicket(); } x++; } }//1非静态// private synchronized void sellTicket() {// if (tickets > 0) {// try {// Thread.sleep(100);// } catch (InterruptedException e) {// e.printStackTrace();// }// System.out.println(Thread.currentThread().getName() + "正在出售第" + tickets + "张票");// tickets--; //tickets=99// }// } private static synchronized void sellTicket() { if (tickets > 0) { try { Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName() + "正在出售第" + tickets + "张票"); tickets--; //tickets=99 } }}
1.11 线程安全的类(了解)
源码中方法都被synchronized修饰
StringBuffer
- 线程安全, 可变的字符序列
- 从版本JDK 5开始,被StringBuilder替代。通常应该使用StringBuilder类, 因为它支持所有相同的操作,但它更快,因为它不执行同步
Vector
- 从Java 2平台v1.2开始,该类改进了List接口, 使其成为Java Collections Framework的成员。 与新的集合实现不同,Vector被同步。 如果不需要线程安全的实现,建议使用ArrayList代替Vector
Hashtable
- 该类实现了一个哈希表,它将键映射到值。任何非null对象都可以用作键或者值
- 从Java 2平台v1.2开始,该类进行了改进,实现了Map接口,使其成为Java Collections Framework的成员。与新的集合实现不同,Hashtable被同步。 如果不需要线程安全的实现,建议使用HashMap代替Hashtable
Collections
类中static <t> List<t> snchronizedList(List<t> list)</t></t></t>
:返回由指定列表支持的同步(线程安全)的列表
package test;import java.util.ArrayList;import java.util.Collection;import java.util.Collections;public class Demo { public static void main(String[] args) { //static <t> List<t> snchronizedList(List<t> list):返回由指定列表支持的同步(线程安全)的列表 Collection<string> list = Collections.synchronizedList(new ArrayList<string>()); /*源码都是返回Synchronized public static <t> List<t> synchronizedList(List<t> list) { return (list instanceof RandomAccess ? new Collections.SynchronizedRandomAccessList(list) : new Collections.SynchronizedList(list)); }*/ }}</t></t></t></string></string></t></t></t>
1.12 Lock锁
- Lock是接口不能直接实例化,采用实现类ReentrantLock来实例化(JDK5以后)
- ReentrantLock构造方法:
方法名 | 说明 |
---|---|
ReentrantLock() | 创建一个ReentrantLock的实例对象 |
- Lock中获得锁和释放锁方法:
方法名 | 说明 |
---|---|
void lock() | 获得锁 |
void unlock() | 释放锁 |
- 推荐使用
try{} finall{}
代码块来加锁和释放锁
package test;import java.util.concurrent.locks.Lock;import java.util.concurrent.locks.ReentrantLock;public class SellTicket implements Runnable{ private static int tickets = 100; private Lock lock = new ReentrantLock(); @Override public void run() { while(true) { try { lock.lock(); if (tickets > 0) { try { Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName() + "正在出售第" + tickets + "张票"); tickets--; } }finally { lock.unlock(); } } }}
1.13 线程通讯
- 线程通信一定是多个线程在操作同一个资源才需要通信
方法名 | 说明 |
---|---|
public void wait() | 让当前线程进入到等待状态,此方法必须锁对象调用 |
public void notify() | 唤醒当前锁对象上等待状态的某个线程,此方法必须锁对象调用 |
public void notifyAll() | 唤醒当前锁对象上等待状态的全部线程,此方法必须锁对象调用 |
1.14 生产者消费者
1.14.1 生产者消费者概述
- 为了体现生产和消费过程中的等待和唤醒,Java就提供了几个方法供我们使用,这几个方法在Object类中
- Object类的等待和唤醒方法
方法名 | 说明 |
---|---|
void wait() | 导致当前线程等待,直到另一个线程调用该对象的 notify() 方法或 notifyAll() 方法 |
void notify() | 唤醒正在等待对象监视器的单个线程 |
void notifyAll() | 唤醒正在等待对象监视器的所有线程 |
1.14.2 生产者消费者案例
- 奶箱类
package test;//1:定义奶箱类public class Box { //定义一个成员变量,表示第x瓶奶 private int milk; //定义一个成员变量表示奶箱的状态 private boolean state = false; //提供存储牛奶和获取牛奶的操作 public synchronized void put(int milk) { //如果有牛奶等待消费 if(state) { try { wait(); } catch (InterruptedException e) { e.printStackTrace(); } } //如果没有牛奶,就生产牛奶 this.milk = milk; System.out.println("送奶工将第" + this.milk + "瓶奶放入奶箱"); //生产完毕后,修改奶箱状态 state = true; //唤醒其他等待线程 notifyAll(); } public synchronized void get() { //如果没有牛奶,就等到生产 if(!state) { try { wait(); } catch (InterruptedException e) { e.printStackTrace(); } } //如果有牛奶,就消费牛奶 System.out.println("用户拿到第" + this.milk + "瓶奶"); //消费完毕后,修改奶箱状态 state = false; //唤醒其他等待线程 notifyAll(); }}
- 生产者类
package test;//2:生产者类(Producer):实现Runnable接口public class Producer implements Runnable { private Box b; public Producer(Box b) { this.b = b; } //重写run()方法,调用存储牛奶的操作 @Override public void run() { for (int i = 1; i
- 消费者类
package test;//3:消费者类(Customer);实现Runnable接口public class Customer implements Runnable{ private Box b; public Customer(Box b) { this.b = b; } //重写run()方法,调用获取牛奶的操作 @Override public void run() { while(true) { b.get(); } }}
- 测试类
package test;public class BoxDemo { public static void main(String[] args) { //创建奶箱对象,这是共享数据区域 Box b = new Box(); //创建生产者对象,把奶箱对象作为构造方法参数传递。因为在这个类中要谓用存储牛奶的操作 Producer p = new Producer(b); //创建消费者对象,把奶箱对象作为构造方法参数传递,因为在这个类中要调用获取牛奶的操作 Customer c =new Customer(b); //创建2个线程对象,分别把生产者对象和消费者对象作为构造方法参数传递 Thread t1 = new Thread(p); Thread t2 = new Thread(c); //启动线程 t1.start(); t2.start();// 送奶工将第1瓶奶放入奶箱// 用户拿到第1瓶奶// 送奶工将第2瓶奶放入奶箱// 用户拿到第2瓶奶// 送奶工将第3瓶奶放入奶箱// 用户拿到第3瓶奶// 送奶工将第4瓶奶放入奶箱// 用户拿到第4瓶奶// 送奶工将第5瓶奶放入奶箱// 用户拿到第5瓶奶 }}
推荐学习:《java视频教程》
위 내용은 멀티스레딩 및 스레드 동기화를 달성하는 Java 클래식 기술의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Java의 난수 생성기 안내. 여기서는 예제를 통해 Java의 함수와 예제를 통해 두 가지 다른 생성기에 대해 설명합니다.

Java의 Weka 가이드. 여기에서는 소개, weka java 사용 방법, 플랫폼 유형 및 장점을 예제와 함께 설명합니다.

Java의 Smith Number 가이드. 여기서는 정의, Java에서 스미스 번호를 확인하는 방법에 대해 논의합니다. 코드 구현의 예.

이 기사에서는 가장 많이 묻는 Java Spring 면접 질문과 자세한 답변을 보관했습니다. 그래야 면접에 합격할 수 있습니다.

Java 8은 스트림 API를 소개하여 데이터 컬렉션을 처리하는 강력하고 표현적인 방법을 제공합니다. 그러나 스트림을 사용할 때 일반적인 질문은 다음과 같은 것입니다. 기존 루프는 조기 중단 또는 반환을 허용하지만 스트림의 Foreach 메소드는이 방법을 직접 지원하지 않습니다. 이 기사는 이유를 설명하고 스트림 처리 시스템에서 조기 종료를 구현하기위한 대체 방법을 탐색합니다. 추가 읽기 : Java Stream API 개선 스트림 foreach를 이해하십시오 Foreach 메소드는 스트림의 각 요소에서 하나의 작업을 수행하는 터미널 작동입니다. 디자인 의도입니다

Java의 TimeStamp to Date 안내. 여기서는 소개와 예제와 함께 Java에서 타임스탬프를 날짜로 변환하는 방법에 대해서도 설명합니다.

캡슐은 3 차원 기하학적 그림이며, 양쪽 끝에 실린더와 반구로 구성됩니다. 캡슐의 부피는 실린더의 부피와 양쪽 끝에 반구의 부피를 첨가하여 계산할 수 있습니다. 이 튜토리얼은 다른 방법을 사용하여 Java에서 주어진 캡슐의 부피를 계산하는 방법에 대해 논의합니다. 캡슐 볼륨 공식 캡슐 볼륨에 대한 공식은 다음과 같습니다. 캡슐 부피 = 원통형 볼륨 2 반구 볼륨 안에, R : 반구의 반경. H : 실린더의 높이 (반구 제외). 예 1 입력하다 반경 = 5 단위 높이 = 10 단위 산출 볼륨 = 1570.8 입방 단위 설명하다 공식을 사용하여 볼륨 계산 : 부피 = π × r2 × h (4
