mysql 딥 페이징 문제를 해결하는 방법
이 기사에서는 mysql에 대한 관련 지식을 제공합니다. 주로 mysql 딥 페이징 문제에 대한 우아한 솔루션을 소개합니다. 이 기사에서는 mysql 테이블에 많은 양의 데이터가 있을 때 딥 페이징 문제를 최적화하는 방법에 대해 설명합니다. 느린 SQL 문제를 최적화하는 최근 사례의 의사 코드가 모든 사람에게 도움이 되기를 바랍니다.
추천 학습: mysql 비디오 튜토리얼
일일 수요 개발 과정에서 모두가 Limit에 대해 잘 알고 있을 것이라고 생각하지만 Limit을 사용할 때 오프셋(Offset)이 매우 클 때 쿼리를 찾을 수 있습니다. 효율성이 점점 느려지고 있습니다. 처음에 제한이 2000이면 필요한 데이터를 쿼리하는 데 200ms가 걸릴 수 있지만 제한이 4000 오프셋 100000인 경우 쿼리 효율이 이미 약 1S가 필요하다는 것을 알 수 있습니다. 점점 더 느려집니다.
요약
이 글에서는 mysql 테이블에 대용량 데이터가 있을 때 딥 페이징 문제를 최적화하는 방법에 대해 논의하고, 최근 느린 SQL 문제를 최적화한 사례의 의사코드를 첨부하겠습니다.
1. 딥 페이징 문제 설명 제한
먼저 테이블 구조를 살펴보겠습니다(예를 들어보겠습니다. 테이블 구조가 불완전하고 쓸모 없는 필드가 표시되지 않습니다)
CREATE TABLE `p2p_detail_record` ( `id` varchar(32) COLLATE utf8mb4_bin NOT NULL DEFAULT '' COMMENT '主键', `batch_num` int NOT NULL DEFAULT '0' COMMENT '上报数量', `uptime` bigint NOT NULL DEFAULT '0' COMMENT '上报时间', `uuid` varchar(64) COLLATE utf8mb4_bin NOT NULL DEFAULT '' COMMENT '会议id', `start_time_stamp` bigint NOT NULL DEFAULT '0' COMMENT '开始时间', `answer_time_stamp` bigint NOT NULL DEFAULT '0' COMMENT '应答时间', `end_time_stamp` bigint NOT NULL DEFAULT '0' COMMENT '结束时间', `duration` int NOT NULL DEFAULT '0' COMMENT '持续时间', PRIMARY KEY (`id`), KEY `idx_uuid` (`uuid`), KEY `idx_start_time_stamp` (`start_time_stamp`) //索引, ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin COMMENT='p2p通话记录详情表';
우리가 원하는 딥 페이징 SQL을 가정해 보겠습니다. 쿼리는 이렇게 생겼어요
select * from p2p_detail_record ppdr where ppdr .start_time_stamp >1656666798000 limit 0,2000
쿼리 효율이 94ms인데 빠른가요? 따라서 100000 또는 2000으로 제한하면 쿼리 효율성은 1.5S로 이미 매우 느립니다.
2.SQL이 느려지는 원인 분석
이 SQL의 실행 계획을 살펴보겠습니다
인덱스에도 가는데 왜 아직도 느린걸까요? 먼저 mysql 관련 지식 포인트를 검토해 보겠습니다.
클러스터형 인덱스 및 비클러스터형 인덱스
클러스터형 인덱스: 리프 노드는 전체 데이터 행을 저장합니다.
비클러스터형 인덱스: 리프 노드는 데이터의 전체 행에 해당하는 기본 키 값을 저장합니다.
비클러스터형 인덱스 쿼리를 사용하는 과정
- 비클러스터형 인덱스 트리를 통해 해당 리프 노드를 찾아 기본키 값을 얻는다.
- 그런 다음 기본 키 값을 가져오고 클러스터형 인덱스 트리로 돌아가 해당 데이터의 전체 행을 찾습니다. (전체 프로세스를 테이블 리턴이라고 합니다)
이 SQL이 느린 이유에 대한 질문으로 돌아가서, 그 이유는 다음과 같습니다
1 제한 문은 먼저 오프셋+n 행을 스캔한 다음 삭제합니다. 이전 오프셋 행. n개 행의 데이터를 반환한 후. 즉, limit 100000,10
은 100010개의 행을 검색하고 limit 0,10
은 10개의 행만 검색합니다. 여기서는 테이블을 100010번 반환해야 하며 테이블을 반환하는 데 많은 시간이 소요됩니다. limit 100000,10
,就会扫描100010行,而limit 0,10
,只扫描10行。这里需要回表100010次,大量的时间都在回表这个上面。
方案核心思路: 能不能事先知道要从哪个主键ID开始,减少回表的次数
常见解决方案
通过子查询优化
select * from p2p_detail_record ppdr where id >= (select id from p2p_detail_record ppdr2 where ppdr2 .start_time_stamp >1656666798000 limit 100000,1) limit 2000
相同的查询结果,也是10W条开始的第2000条,查询效率为200ms,是不是快了不少。
标签记录法
标签记录法: 其实标记一下上次查询到哪一条了,下次再来查的时候,从该条开始往下扫描。类似书签的作用
select * from p2p_detail_record ppdr where ppdr.id > 'bb9d67ee6eac4cab9909bad7c98f54d4' order by id limit 2000 备注:bb9d67ee6eac4cab9909bad7c98f54d4是上次查询结果的最后一条ID
使用标签记录法,性能都会不错的,因为命中了id
솔루션의 핵심 아이디어:
- 일반적인 솔루션
- 하위 쿼리를 통해 최적화동일 쿼리 결과도 100,000개 항목에서 시작하여 2000번째 기사이며, 쿼리 효율성은 200ms로 훨씬 빠릅니다.
CREATE TABLE `p2p_detail_record` ( `id` varchar(32) COLLATE utf8mb4_bin NOT NULL DEFAULT '' COMMENT '主键', `batch_num` int NOT NULL DEFAULT '0' COMMENT '上报数量', `uptime` bigint NOT NULL DEFAULT '0' COMMENT '上报时间', `uuid` varchar(64) COLLATE utf8mb4_bin NOT NULL DEFAULT '' COMMENT '会议id', `start_time_stamp` bigint NOT NULL DEFAULT '0' COMMENT '开始时间', `answer_time_stamp` bigint NOT NULL DEFAULT '0' COMMENT '应答时间', `end_time_stamp` bigint NOT NULL DEFAULT '0' COMMENT '结束时间', `duration` int NOT NULL DEFAULT '0' COMMENT '持续时间', PRIMARY KEY (`id`), KEY `idx_uuid` (`uuid`), KEY `idx_start_time_stamp` (`start_time_stamp`) //索引, ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin COMMENT='p2p通话记录详情表';
로그인 후 복사로그인 후 복사로그인 후 복사

- 태그 기록 방법 : 사실, 지난번에 확인했던 항목을 표시해두고, 다음에 다시 확인할 때는 해당 항목부터 아래로 스캔하세요. 북마크와 유사
//最小ID String lastId = null; //一页的条数 Integer pageSize = 2000; List<P2pRecordVo> list ; do{ list = listP2pRecordByPage(lastId,pageSize); //标签记录法,记录上次查询过的Id lastId = list.get(list.size()-1).getId(); //获取上一次查询数据最后的ID,用于记录 //对数据的操作逻辑 XXXXX(); }while(isNotEmpty(list)); <select id ="listP2pRecordByPage"> select * from p2p_detail_record ppdr where 1=1 <if test = "lastId != null"> and ppdr.id > #{lastId} </if> order by id asc limit #{pageSize} </select>
id
인덱스를 적중시키므로 성능이 좋습니다. 하지만 이 방법에는 몇 가지 단점이 있습니다. 1. 여러 페이지가 아닌 연속된 페이지에서만 쿼리할 수 있습니다. 2. continuous auto-increment와 유사한 필드가 필요합니다(orber by id 사용 가능).
- 솔루션 비교
방법
이용: 페이지 간 쿼리가 가능하며, 원하는 페이지에서 데이터를 확인할 수 있습니다.
🎜단점: 🎜 🎜태그 기록 방법🎜만큼 효율적이지 않습니다. 🎜이유:🎜 예를 들어 100,000개의 데이터를 확인해야 하는 경우에는 Non-Clustered Index에 해당하는 1000번째 데이터도 먼저 쿼리한 다음 100,000번째부터 ID를 얻어 쿼리해야 합니다. 🎜🎜🎜🎜태그 기록 방법을 사용하면🎜🎜🎜🎜🎜장점: 🎜 쿼리 효율성이 매우 안정적이고 매우 빠릅니다. 🎜🎜🎜단점:🎜🎜- 不跨页查询,
- 需要一种类似连续自增的字段
关于第二点的说明: 该点一般都好解决,可使用任意不重复的字段进行排序即可。若使用可能重复的字段进行排序的字段,由于mysql对于相同值的字段排序是无序,导致如果正好在分页时,上下页中可能存在相同的数据。
实战案例
需求: 需要查询查询某一时间段的数据量,假设有几十万的数据量需要查询出来,进行某些操作。
需求分析 1、分批查询(分页查询),设计深分页问题,导致效率较慢。
CREATE TABLE `p2p_detail_record` ( `id` varchar(32) COLLATE utf8mb4_bin NOT NULL DEFAULT '' COMMENT '主键', `batch_num` int NOT NULL DEFAULT '0' COMMENT '上报数量', `uptime` bigint NOT NULL DEFAULT '0' COMMENT '上报时间', `uuid` varchar(64) COLLATE utf8mb4_bin NOT NULL DEFAULT '' COMMENT '会议id', `start_time_stamp` bigint NOT NULL DEFAULT '0' COMMENT '开始时间', `answer_time_stamp` bigint NOT NULL DEFAULT '0' COMMENT '应答时间', `end_time_stamp` bigint NOT NULL DEFAULT '0' COMMENT '结束时间', `duration` int NOT NULL DEFAULT '0' COMMENT '持续时间', PRIMARY KEY (`id`), KEY `idx_uuid` (`uuid`), KEY `idx_start_time_stamp` (`start_time_stamp`) //索引, ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin COMMENT='p2p通话记录详情表';
伪代码实现:
//最小ID String lastId = null; //一页的条数 Integer pageSize = 2000; List<P2pRecordVo> list ; do{ list = listP2pRecordByPage(lastId,pageSize); //标签记录法,记录上次查询过的Id lastId = list.get(list.size()-1).getId(); //获取上一次查询数据最后的ID,用于记录 //对数据的操作逻辑 XXXXX(); }while(isNotEmpty(list)); <select id ="listP2pRecordByPage"> select * from p2p_detail_record ppdr where 1=1 <if test = "lastId != null"> and ppdr.id > #{lastId} </if> order by id asc limit #{pageSize} </select>
这里有个小优化点: 可能有的人会先对所有数据排序一遍,拿到最小ID,但是这样对所有数据排序,然后去min(id),耗时也蛮长的,其实第一次查询,可不带lastId进行查询,查询结果也是一样。速度更快。
总结
1、当业务需要从表中查出大数据量时,而又项目架构没上ES时,可考虑使用标签记录法的方式,对查询效率进行优化。
2、从需求上也应该尽可能避免,在大数据量的情况下,分页查询最后一页的功能。或者限制成只能一页一页往后划的场景。
推荐学习:mysql视频教程
위 내용은 mysql 딥 페이징 문제를 해결하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템입니다. 1) 데이터베이스 및 테이블 작성 : CreateAbase 및 CreateTable 명령을 사용하십시오. 2) 기본 작업 : 삽입, 업데이트, 삭제 및 선택. 3) 고급 운영 : 가입, 하위 쿼리 및 거래 처리. 4) 디버깅 기술 : 확인, 데이터 유형 및 권한을 확인하십시오. 5) 최적화 제안 : 인덱스 사용, 선택을 피하고 거래를 사용하십시오.

다음 단계를 통해 phpmyadmin을 열 수 있습니다. 1. 웹 사이트 제어판에 로그인; 2. phpmyadmin 아이콘을 찾고 클릭하십시오. 3. MySQL 자격 증명을 입력하십시오. 4. "로그인"을 클릭하십시오.

Navicat Premium을 사용하여 데이터베이스 생성 : 데이터베이스 서버에 연결하고 연결 매개 변수를 입력하십시오. 서버를 마우스 오른쪽 버튼으로 클릭하고 데이터베이스 생성을 선택하십시오. 새 데이터베이스의 이름과 지정된 문자 세트 및 Collation의 이름을 입력하십시오. 새 데이터베이스에 연결하고 객체 브라우저에서 테이블을 만듭니다. 테이블을 마우스 오른쪽 버튼으로 클릭하고 데이터 삽입을 선택하여 데이터를 삽입하십시오.

MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템으로, 주로 데이터를 신속하고 안정적으로 저장하고 검색하는 데 사용됩니다. 작업 원칙에는 클라이언트 요청, 쿼리 해상도, 쿼리 실행 및 반환 결과가 포함됩니다. 사용의 예로는 테이블 작성, 데이터 삽입 및 쿼리 및 조인 작업과 같은 고급 기능이 포함됩니다. 일반적인 오류에는 SQL 구문, 데이터 유형 및 권한이 포함되며 최적화 제안에는 인덱스 사용, 최적화 된 쿼리 및 테이블 분할이 포함됩니다.

응용 프로그램을 열고 새로운 연결 (Ctrl n)을 선택하여 Navicat에서 새로운 MySQL 연결을 만들 수 있습니다. "MySQL"을 연결 유형으로 선택하십시오. 호스트 이름/IP 주소, 포트, 사용자 이름 및 비밀번호를 입력하십시오. (선택 사항) 고급 옵션을 구성합니다. 연결을 저장하고 연결 이름을 입력하십시오.

MySQL은 성능, 신뢰성, 사용 편의성 및 커뮤니티 지원을 위해 선택됩니다. 1.MYSQL은 효율적인 데이터 저장 및 검색 기능을 제공하여 여러 데이터 유형 및 고급 쿼리 작업을 지원합니다. 2. 고객-서버 아키텍처 및 다중 스토리지 엔진을 채택하여 트랜잭션 및 쿼리 최적화를 지원합니다. 3. 사용하기 쉽고 다양한 운영 체제 및 프로그래밍 언어를 지원합니다. 4. 강력한 지역 사회 지원을 받고 풍부한 자원과 솔루션을 제공합니다.

Redis는 단일 스레드 아키텍처를 사용하여 고성능, 단순성 및 일관성을 제공합니다. 동시성을 향상시키기 위해 I/O 멀티플렉싱, 이벤트 루프, 비 블로킹 I/O 및 공유 메모리를 사용하지만 동시성 제한 제한, 단일 고장 지점 및 쓰기 집약적 인 워크로드에 부적합한 제한이 있습니다.

MySQL 및 SQL은 개발자에게 필수적인 기술입니다. 1.MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템이며 SQL은 데이터베이스를 관리하고 작동하는 데 사용되는 표준 언어입니다. 2.MYSQL은 효율적인 데이터 저장 및 검색 기능을 통해 여러 스토리지 엔진을 지원하며 SQL은 간단한 문을 통해 복잡한 데이터 작업을 완료합니다. 3. 사용의 예에는 기본 쿼리 및 조건 별 필터링 및 정렬과 같은 고급 쿼리가 포함됩니다. 4. 일반적인 오류에는 구문 오류 및 성능 문제가 포함되며 SQL 문을 확인하고 설명 명령을 사용하여 최적화 할 수 있습니다. 5. 성능 최적화 기술에는 인덱스 사용, 전체 테이블 스캔 피하기, 조인 작업 최적화 및 코드 가독성 향상이 포함됩니다.
