목차
요약
1. 딥 페이징 문제 설명 제한
2.SQL이 느려지는 원인 분석
클러스터형 인덱스 및 비클러스터형 인덱스
常见解决方案
通过子查询优化
标签记录法
实战案例
总结
데이터 베이스 MySQL 튜토리얼 mysql 딥 페이징 문제를 해결하는 방법

mysql 딥 페이징 문제를 해결하는 방법

Jul 26, 2022 pm 01:41 PM
mysql

이 기사에서는 mysql에 대한 관련 지식을 제공합니다. 주로 mysql 딥 페이징 문제에 대한 우아한 솔루션을 소개합니다. 이 기사에서는 mysql 테이블에 많은 양의 데이터가 있을 때 딥 페이징 문제를 최적화하는 방법에 대해 설명합니다. 느린 SQL 문제를 최적화하는 최근 사례의 의사 코드가 모든 사람에게 도움이 되기를 바랍니다.

mysql 딥 페이징 문제를 해결하는 방법

추천 학습: mysql 비디오 튜토리얼

일일 수요 개발 과정에서 모두가 Limit에 대해 잘 알고 있을 것이라고 생각하지만 Limit을 사용할 때 오프셋(Offset)이 매우 클 때 쿼리를 찾을 수 있습니다. 효율성이 점점 느려지고 있습니다. 처음에 제한이 2000이면 필요한 데이터를 쿼리하는 데 200ms가 걸릴 수 있지만 제한이 4000 오프셋 100000인 경우 쿼리 효율이 이미 약 1S가 필요하다는 것을 알 수 있습니다. 점점 더 느려집니다.

요약

이 글에서는 mysql 테이블에 대용량 데이터가 있을 때 딥 페이징 문제를 최적화하는 방법에 대해 논의하고, 최근 느린 SQL 문제를 최적화한 사례의 의사코드를 첨부하겠습니다.

1. 딥 페이징 문제 설명 제한

먼저 테이블 구조를 살펴보겠습니다(예를 들어보겠습니다. 테이블 구조가 불완전하고 쓸모 없는 필드가 표시되지 않습니다)

CREATE TABLE `p2p_detail_record` (
  `id` varchar(32) COLLATE utf8mb4_bin NOT NULL DEFAULT '' COMMENT '主键',
  `batch_num` int NOT NULL DEFAULT '0' COMMENT '上报数量',
  `uptime` bigint NOT NULL DEFAULT '0' COMMENT '上报时间',
  `uuid` varchar(64) COLLATE utf8mb4_bin NOT NULL DEFAULT '' COMMENT '会议id',
  `start_time_stamp` bigint NOT NULL DEFAULT '0' COMMENT '开始时间',
  `answer_time_stamp` bigint NOT NULL DEFAULT '0' COMMENT '应答时间',
  `end_time_stamp` bigint NOT NULL DEFAULT '0' COMMENT '结束时间',
  `duration` int NOT NULL DEFAULT '0' COMMENT '持续时间',
  PRIMARY KEY (`id`),
  KEY `idx_uuid` (`uuid`),
  KEY `idx_start_time_stamp` (`start_time_stamp`) //索引,
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin COMMENT='p2p通话记录详情表';
로그인 후 복사
로그인 후 복사
로그인 후 복사

우리가 원하는 딥 페이징 SQL을 가정해 보겠습니다. 쿼리는 이렇게 생겼어요

select * 
from p2p_detail_record ppdr 
where ppdr .start_time_stamp >1656666798000 
limit 0,2000
로그인 후 복사

쿼리 효율이 94ms인데 빠른가요? 따라서 100000 또는 2000으로 제한하면 쿼리 효율성은 1.5S로 이미 매우 느립니다.


2.SQL이 느려지는 원인 분석

이 SQL의 실행 계획을 살펴보겠습니다

인덱스에도 가는데 왜 아직도 느린걸까요? 먼저 mysql 관련 지식 포인트를 검토해 보겠습니다.

클러스터형 인덱스 및 비클러스터형 인덱스

클러스터형 인덱스: 리프 노드는 전체 데이터 행을 저장합니다.

비클러스터형 인덱스: 리프 노드는 데이터의 전체 행에 해당하는 기본 키 값을 저장합니다.

비클러스터형 인덱스 쿼리를 사용하는 과정

  • 비클러스터형 인덱스 트리를 통해 해당 리프 노드를 찾아 기본키 값을 얻는다.
  • 그런 다음 기본 키 값을 가져오고 클러스터형 인덱스 트리로 돌아가 해당 데이터의 전체 행을 찾습니다. (전체 프로세스를 테이블 리턴이라고 합니다)

이 SQL이 느린 이유에 대한 질문으로 돌아가서, 그 이유는 다음과 같습니다

1 제한 문은 먼저 오프셋+n 행을 스캔한 다음 삭제합니다. 이전 오프셋 행. n개 행의 데이터를 반환한 후. 즉, limit 100000,10은 100010개의 행을 검색하고 limit 0,10은 10개의 행만 검색합니다. 여기서는 테이블을 100010번 반환해야 하며 테이블을 반환하는 데 많은 시간이 소요됩니다. limit 100000,10,就会扫描100010行,而limit 0,10,只扫描10行。这里需要回表100010次,大量的时间都在回表这个上面。

方案核心思路: 能不能事先知道要从哪个主键ID开始,减少回表的次数

常见解决方案

通过子查询优化

select * 
from p2p_detail_record ppdr 
where id >= (select id from p2p_detail_record ppdr2 where ppdr2 .start_time_stamp >1656666798000 limit 100000,1) 
limit 2000
로그인 후 복사

相同的查询结果,也是10W条开始的第2000条,查询效率为200ms,是不是快了不少。

标签记录法

标签记录法: 其实标记一下上次查询到哪一条了,下次再来查的时候,从该条开始往下扫描。类似书签的作用

select * from p2p_detail_record ppdr
where ppdr.id > 'bb9d67ee6eac4cab9909bad7c98f54d4'
order by id 
limit 2000

备注:bb9d67ee6eac4cab9909bad7c98f54d4是上次查询结果的最后一条ID
로그인 후 복사

使用标签记录法,性能都会不错的,因为命中了id솔루션의 핵심 아이디어:

테이블 반환 수를 줄이기 위해 어떤 기본 키 ID부터 시작할지 미리 알 수 있나요?
  • 일반적인 솔루션
  • 하위 쿼리를 통해 최적화
    CREATE TABLE `p2p_detail_record` (
      `id` varchar(32) COLLATE utf8mb4_bin NOT NULL DEFAULT '' COMMENT '主键',
      `batch_num` int NOT NULL DEFAULT '0' COMMENT '上报数量',
      `uptime` bigint NOT NULL DEFAULT '0' COMMENT '上报时间',
      `uuid` varchar(64) COLLATE utf8mb4_bin NOT NULL DEFAULT '' COMMENT '会议id',
      `start_time_stamp` bigint NOT NULL DEFAULT '0' COMMENT '开始时间',
      `answer_time_stamp` bigint NOT NULL DEFAULT '0' COMMENT '应答时间',
      `end_time_stamp` bigint NOT NULL DEFAULT '0' COMMENT '结束时间',
      `duration` int NOT NULL DEFAULT '0' COMMENT '持续时间',
      PRIMARY KEY (`id`),
      KEY `idx_uuid` (`uuid`),
      KEY `idx_start_time_stamp` (`start_time_stamp`) //索引,
    ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin COMMENT='p2p通话记录详情表';
    로그인 후 복사
    로그인 후 복사
    로그인 후 복사
    동일 쿼리 결과도 100,000개 항목에서 시작하여 2000번째 기사이며, 쿼리 효율성은 200ms로 훨씬 빠릅니다.

태그 기록 방법
  • 태그 기록 방법 : 사실, 지난번에 확인했던 항목을 표시해두고, 다음에 다시 확인할 때는 해당 항목부터 아래로 스캔하세요.
  • 북마크와 유사

//最小ID 
String  lastId = null; 
//一页的条数 
Integer pageSize = 2000; 
List<P2pRecordVo> list ;
do{   
   list = listP2pRecordByPage(lastId,pageSize);    //标签记录法,记录上次查询过的Id 
   lastId = list.get(list.size()-1).getId();       //获取上一次查询数据最后的ID,用于记录
   //对数据的操作逻辑
   XXXXX();
 }while(isNotEmpty(list));
   
<select id ="listP2pRecordByPage">  
   select * 
   from p2p_detail_record ppdr where 1=1
   <if test = "lastId != null">
   and ppdr.id > #{lastId}
   </if>
   order by id asc
   limit #{pageSize}
</select>
로그인 후 복사
로그인 후 복사
태그 기록 방식을 사용하면 id 인덱스를 적중시키므로 성능이 좋습니다. 하지만 이 방법에는 몇 가지 단점

이 있습니다.

1. 여러 페이지가 아닌 연속된 페이지에서만 쿼리할 수 있습니다. 2. continuous auto-increment와 유사한 필드가 필요합니다(orber by id 사용 가능).

  • 솔루션 비교
하위 쿼리 최적화

방법

이용: 페이지 간 쿼리가 가능하며, 원하는 페이지에서 데이터를 확인할 수 있습니다.

🎜단점: 🎜 🎜태그 기록 방법🎜만큼 효율적이지 않습니다. 🎜이유:🎜 예를 들어 100,000개의 데이터를 확인해야 하는 경우에는 Non-Clustered Index에 해당하는 1000번째 데이터도 먼저 쿼리한 다음 100,000번째부터 ID를 얻어 쿼리해야 합니다. 🎜🎜🎜🎜태그 기록 방법을 사용하면🎜🎜🎜🎜🎜장점: 🎜 쿼리 효율성이 매우 안정적이고 매우 빠릅니다. 🎜🎜🎜단점:🎜🎜
  • 不跨页查询,
  • 需要一种类似连续自增的字段

关于第二点的说明: 该点一般都好解决,可使用任意不重复的字段进行排序即可。若使用可能重复的字段进行排序的字段,由于mysql对于相同值的字段排序是无序,导致如果正好在分页时,上下页中可能存在相同的数据。

实战案例

需求: 需要查询查询某一时间段的数据量,假设有几十万的数据量需要查询出来,进行某些操作。

需求分析 1、分批查询(分页查询),设计深分页问题,导致效率较慢。

CREATE TABLE `p2p_detail_record` (
  `id` varchar(32) COLLATE utf8mb4_bin NOT NULL DEFAULT &#39;&#39; COMMENT &#39;主键&#39;,
  `batch_num` int NOT NULL DEFAULT &#39;0&#39; COMMENT &#39;上报数量&#39;,
  `uptime` bigint NOT NULL DEFAULT &#39;0&#39; COMMENT &#39;上报时间&#39;,
  `uuid` varchar(64) COLLATE utf8mb4_bin NOT NULL DEFAULT &#39;&#39; COMMENT &#39;会议id&#39;,
  `start_time_stamp` bigint NOT NULL DEFAULT &#39;0&#39; COMMENT &#39;开始时间&#39;,
  `answer_time_stamp` bigint NOT NULL DEFAULT &#39;0&#39; COMMENT &#39;应答时间&#39;,
  `end_time_stamp` bigint NOT NULL DEFAULT &#39;0&#39; COMMENT &#39;结束时间&#39;,
  `duration` int NOT NULL DEFAULT &#39;0&#39; COMMENT &#39;持续时间&#39;,
  PRIMARY KEY (`id`),
  KEY `idx_uuid` (`uuid`),
  KEY `idx_start_time_stamp` (`start_time_stamp`) //索引,
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin COMMENT=&#39;p2p通话记录详情表&#39;;
로그인 후 복사
로그인 후 복사
로그인 후 복사

伪代码实现

//最小ID 
String  lastId = null; 
//一页的条数 
Integer pageSize = 2000; 
List<P2pRecordVo> list ;
do{   
   list = listP2pRecordByPage(lastId,pageSize);    //标签记录法,记录上次查询过的Id 
   lastId = list.get(list.size()-1).getId();       //获取上一次查询数据最后的ID,用于记录
   //对数据的操作逻辑
   XXXXX();
 }while(isNotEmpty(list));
   
<select id ="listP2pRecordByPage">  
   select * 
   from p2p_detail_record ppdr where 1=1
   <if test = "lastId != null">
   and ppdr.id > #{lastId}
   </if>
   order by id asc
   limit #{pageSize}
</select>
로그인 후 복사
로그인 후 복사

这里有个小优化点: 可能有的人会先对所有数据排序一遍,拿到最小ID,但是这样对所有数据排序,然后去min(id),耗时也蛮长的,其实第一次查询,可不带lastId进行查询,查询结果也是一样。速度更快。

总结

1、当业务需要从表中查出大数据量时,而又项目架构没上ES时,可考虑使用标签记录法的方式,对查询效率进行优化。

2、从需求上也应该尽可能避免,在大数据量的情况下,分页查询最后一页的功能。或者限制成只能一页一页往后划的场景。

推荐学习:mysql视频教程

위 내용은 mysql 딥 페이징 문제를 해결하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 채팅 명령 및 사용 방법
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

MySQL : 쉽게 학습하기위한 간단한 개념 MySQL : 쉽게 학습하기위한 간단한 개념 Apr 10, 2025 am 09:29 AM

MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템입니다. 1) 데이터베이스 및 테이블 작성 : CreateAbase 및 CreateTable 명령을 사용하십시오. 2) 기본 작업 : 삽입, 업데이트, 삭제 및 선택. 3) 고급 운영 : 가입, 하위 쿼리 및 거래 처리. 4) 디버깅 기술 : 확인, 데이터 유형 및 권한을 확인하십시오. 5) 최적화 제안 : 인덱스 사용, 선택을 피하고 거래를 사용하십시오.

phpmyadmin을 여는 방법 phpmyadmin을 여는 방법 Apr 10, 2025 pm 10:51 PM

다음 단계를 통해 phpmyadmin을 열 수 있습니다. 1. 웹 사이트 제어판에 로그인; 2. phpmyadmin 아이콘을 찾고 클릭하십시오. 3. MySQL 자격 증명을 입력하십시오. 4. "로그인"을 클릭하십시오.

Navicat Premium을 만드는 방법 Navicat Premium을 만드는 방법 Apr 09, 2025 am 07:09 AM

Navicat Premium을 사용하여 데이터베이스 생성 : 데이터베이스 서버에 연결하고 연결 매개 변수를 입력하십시오. 서버를 마우스 오른쪽 버튼으로 클릭하고 데이터베이스 생성을 선택하십시오. 새 데이터베이스의 이름과 지정된 문자 세트 및 Collation의 이름을 입력하십시오. 새 데이터베이스에 연결하고 객체 브라우저에서 테이블을 만듭니다. 테이블을 마우스 오른쪽 버튼으로 클릭하고 데이터 삽입을 선택하여 데이터를 삽입하십시오.

MySQL : 세계에서 가장 인기있는 데이터베이스 소개 MySQL : 세계에서 가장 인기있는 데이터베이스 소개 Apr 12, 2025 am 12:18 AM

MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템으로, 주로 데이터를 신속하고 안정적으로 저장하고 검색하는 데 사용됩니다. 작업 원칙에는 클라이언트 요청, 쿼리 해상도, 쿼리 실행 및 반환 결과가 포함됩니다. 사용의 예로는 테이블 작성, 데이터 삽입 및 쿼리 및 조인 작업과 같은 고급 기능이 포함됩니다. 일반적인 오류에는 SQL 구문, 데이터 유형 및 권한이 포함되며 최적화 제안에는 인덱스 사용, 최적화 된 쿼리 및 테이블 분할이 포함됩니다.

Navicat에서 MySQL에 새로운 연결을 만드는 방법 Navicat에서 MySQL에 새로운 연결을 만드는 방법 Apr 09, 2025 am 07:21 AM

응용 프로그램을 열고 새로운 연결 (Ctrl n)을 선택하여 Navicat에서 새로운 MySQL 연결을 만들 수 있습니다. "MySQL"을 연결 유형으로 선택하십시오. 호스트 이름/IP 주소, 포트, 사용자 이름 및 비밀번호를 입력하십시오. (선택 사항) 고급 옵션을 구성합니다. 연결을 저장하고 연결 이름을 입력하십시오.

MySQL을 사용하는 이유는 무엇입니까? 혜택과 장점 MySQL을 사용하는 이유는 무엇입니까? 혜택과 장점 Apr 12, 2025 am 12:17 AM

MySQL은 성능, 신뢰성, 사용 편의성 및 커뮤니티 지원을 위해 선택됩니다. 1.MYSQL은 효율적인 데이터 저장 및 검색 기능을 제공하여 여러 데이터 유형 및 고급 쿼리 작업을 지원합니다. 2. 고객-서버 아키텍처 및 다중 스토리지 엔진을 채택하여 트랜잭션 및 쿼리 최적화를 지원합니다. 3. 사용하기 쉽고 다양한 운영 체제 및 프로그래밍 언어를 지원합니다. 4. 강력한 지역 사회 지원을 받고 풍부한 자원과 솔루션을 제공합니다.

단일 스레드 레 디스를 사용하는 방법 단일 스레드 레 디스를 사용하는 방법 Apr 10, 2025 pm 07:12 PM

Redis는 단일 스레드 아키텍처를 사용하여 고성능, 단순성 및 일관성을 제공합니다. 동시성을 향상시키기 위해 I/O 멀티플렉싱, 이벤트 루프, 비 블로킹 I/O 및 공유 메모리를 사용하지만 동시성 제한 제한, 단일 고장 지점 및 쓰기 집약적 인 워크로드에 부적합한 제한이 있습니다.

MySQL 및 SQL : 개발자를위한 필수 기술 MySQL 및 SQL : 개발자를위한 필수 기술 Apr 10, 2025 am 09:30 AM

MySQL 및 SQL은 개발자에게 필수적인 기술입니다. 1.MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템이며 SQL은 데이터베이스를 관리하고 작동하는 데 사용되는 표준 언어입니다. 2.MYSQL은 효율적인 데이터 저장 및 검색 기능을 통해 여러 스토리지 엔진을 지원하며 SQL은 간단한 문을 통해 복잡한 데이터 작업을 완료합니다. 3. 사용의 예에는 기본 쿼리 및 조건 별 필터링 및 정렬과 같은 고급 쿼리가 포함됩니다. 4. 일반적인 오류에는 구문 오류 및 성능 문제가 포함되며 SQL 문을 확인하고 설명 명령을 사용하여 최적화 할 수 있습니다. 5. 성능 최적화 기술에는 인덱스 사용, 전체 테이블 스캔 피하기, 조인 작업 최적화 및 코드 가독성 향상이 포함됩니다.

See all articles