목차
프림 알고리즘 소개
1. 마무리 터치
2. 알고리즘 소개
3. 알고리즘 단계
4. 다이어그램
Java java지도 시간 Java에서 Prime 알고리즘의 원리와 구현(요약 공유)

Java에서 Prime 알고리즘의 원리와 구현(요약 공유)

Aug 15, 2022 pm 06:32 PM
java

이 기사에서는 java에 대한 관련 지식을 제공합니다. Prime 알고리즘은 연결된 그래프에서 최소 신장 트리를 구성하는 철저한 검색 알고리즘입니다. 이 글은 주로 Java에서 Prime 알고리즘의 원리와 구현을 소개합니다. 관심이 있다면 배울 수 있습니다.

Java에서 Prime 알고리즘의 원리와 구현(요약 공유)

추천 학습: "java 비디오 튜토리얼"

프림 알고리즘 소개

1. 마무리 터치

스패닝 트리 과정에서 이미 스패닝 트리에 있는 노드를 세트로 처리하고, 나머지 노드들을 다른 세트로 간주하고, 두 세트를 연결하는 엣지 중에서 가중치가 가장 작은 엣지를 선택할 수 있다.

2. 알고리즘 소개

먼저 노드 1과 같은 노드를 선택하고 이를 집합 U, U={1}에 넣으면 나머지 노드는 V-U={2,3,4, 5입니다. ,6,7}, 집합 V는 그래프의 모든 노드 집합입니다.

이제 두 집합(U, V-U)을 연결하는 간선 중 가중치가 가장 작은 간선을 확인하고, 가중치가 가장 작은 간선과 연결된 노드를 집합 U에 추가하면 됩니다. 위 그림에서 알 수 있듯이, 두 세트를 연결하는 3개의 간선 중에서 간선 1-2의 가중치가 가장 작습니다. 이를 선택하고 집합 U, U={1,2}, V - U=에 노드 2를 추가합니다. 아래 그림과 같이 {3,4,5,6}입니다.

그런 다음 두 세트(U 및 V-U)를 연결하는 모서리 중 가중치가 가장 작은 모서리를 선택합니다. 위 그림에서 알 수 있듯이 두 세트를 연결하는 4개의 간선 중 노드 2에서 노드 7까지의 간선 가중치가 가장 작습니다. 이 간선을 선택하고 집합 U={1,2,7}에 노드 7을 추가합니다. , V-U ={3,4,5,6}.

이렇게 U=V가 끝날 때까지 계속하면, 선택된 Edge와 모든 Node로 구성된 그래프가 최소 스패닝 트리가 됩니다. 이것이 Prim의 알고리즘입니다.

그림을 보면 집합 U에서 집합 U-V까지 어떤 간선이 가장 작은 가중치를 갖는지 쉽게 알 수 있습니다. 그러나 이러한 간선을 프로그램에서 모두 열거한 다음 최소값을 찾기에는 시간 복잡도가 너무 높습니다. 값. 이 문제는 배열을 설정하여 현명하게 해결할 수 있습니다. Closet[j]는 집합 V-U의 노드 j에서 집합 U까지의 가장 가까운 이웃 지점을 나타냅니다. Lowcost[j]는 집합 V-U의 노드 j에서 집합의 가장 가까운 이웃 지점까지의 간선 값을 나타냅니다. U를 설정합니다. 즉, 간선의 가중치(j, 가장 가까운[j])입니다.

예를 들어 위 그림에서 노드 7에서 U를 설정하는 가장 가까운 이웃 지점은 2, cloeest[7]=2입니다. 노드 7에서 가장 가까운 이웃 포인트 2까지의 에지 값은 1이며, 이는 에지(2,7)의 가중치이며 아래 그림과 같이 lowcost[7]=1로 기록됩니다.

그러니 집합 V - U에서 가장 낮은 lowcost[] 노드를 찾으세요.

3. 알고리즘 단계

1. 초기화

집합 U={u0}, u0을 V에 속하게 하고, 가장 가까운[], lowcost[] 및 s[] 배열을 초기화합니다.

2. 집합 V-U에서 가장 작은 lowcost 값을 갖는 노드 t를 찾습니다. 즉, lowcost[t]=min{lowcost[j]}, j는 V-U에 속합니다. 집합 V-U에서 U를 연결합니다.

3. 집합 U에 노드 t를 추가합니다.

4. 집합 V - U가 비어 있으면 알고리즘이 종료되고, 그렇지 않으면 5단계로 이동합니다.

5. V-U 집합의 모든 노드 j에 대해 lowcost[] 및 close[]를 업데이트합니다. if(C[t][j]

위 단계를 따르면 마침내 가중치 합이 가장 작은 스패닝 트리를 얻을 수 있습니다.

4. 다이어그램

그래프 G=(V,E)는 아래 그림과 같이 무방향 연결 가중치 그래프입니다.

1 초기화. u0=1이라고 가정하고, 집합 U={1}, 집합 V-U={2,3,4,5,6,7}, s[1]=true라고 가정하고, 배열 Nearest[]를 초기화합니다. 노드 1을 제외하고, 다른 모든 노드는 1입니다. 이는 집합 V-U의 노드에서 집합 U까지 가장 가까운 이웃 지점이 모두 1임을 의미합니다. lowcost[]: 노드 1에서 집합 V-U의 노드까지의 간선 값입니다. 가장 가까운[] 및 lowcost[]는 아래 그림에 표시되어 있습니다.

초기화 후 사진은 다음과 같습니다.

2 t=2에 해당하는 가장 작은 저비용 노드를 찾습니다. 선택된 간선과 노드는 아래와 같습니다.

3세트 U에 추가되었습니다. 집합 U, U={1,2}에 노드 t를 추가하고 동시에 V-U={3,4,5,6,7}

4를 업데이트합니다. 집합 V-U에서 t의 각 인접 점 j에 대해 t의 도움으로 업데이트될 수 있습니다. 노드 2의 인접한 점은 노드 3과 노드 7입니다.

C[2][3]=20

C[2][7]= 1< ;lowcost[7]=36, 최근접 이웃 거리 업데이트 lowcost[7]=1, 최근접 이웃 Nearest[7]=2;

업데이트된 Nearby[] 및 lowcost[]는 아래 그림과 같습니다.

업데이트된 세트는 아래와 같습니다.

5 t=7에 해당하는 가장 작은 lowcost를 갖는 노드를 찾고, 선택된 간선과 노드는 아래와 같습니다.

6 세트에 추가하세요. 집합 U, U={1,2,7}에 노드 t를 추가하고 동시에 V-U={3,4,5,6}

7을 업데이트합니다. 집합 V-U에서 t의 각 인접 점 j에 대해 t의 도움으로 업데이트될 수 있습니다. 노드 7의 인접한 점은 노드 3, 4, 5, 6입니다.

  • C[7][3]=4
  • C[7][4] =4< ;lowcost[4]=무한대, 가장 가까운 이웃 거리 업데이트 lowcost[3]=9, 가장 가까운 이웃 최근접[4]=7;
  • C[7][5]=4
  • C[7][6]=4

업데이트된 Nearest[] 및 lowcost[]는 아래 그림에 나와 있습니다.

업데이트된 세트는 아래와 같습니다.

8 t=3에 해당하는 가장 작은 lowcost를 갖는 노드를 찾고, 선택된 간선과 노드는 아래와 같습니다.

9세트 U에 추가되었습니다. 집합 U, U={1,2,3,7}에 노드 t를 추가하고 동시에 V-U={4,5,6}

10을 업데이트합니다. 집합 V-U에서 t의 각 인접 점 j에 대해 t의 도움으로 업데이트될 수 있습니다. 노드 3의 이웃은 노드 4입니다.

C[3][4]=15>lowcost[4]=9,

closest[] 및 lowcost[] 배열은 변경되지 않습니다.

업데이트된 세트는 아래와 같습니다.

11 t=4에 해당하는 가장 작은 lowcost를 갖는 노드를 찾고, 선택된 간선과 노드는 아래와 같습니다.

세트 U에 12개가 추가되었습니다. 집합 U, U={1,2,3,4,7}에 노드 t를 추가하고 동시에 V-U={5,6}

13을 업데이트합니다. 집합 V-U에서 t의 각 인접 점 j에 대해 t의 도움으로 업데이트될 수 있습니다. 노드 4의 이웃은 노드 5입니다.

C[4][5]=3

updated close[] 및 lowcost [] As 아래에 표시됩니다.

업데이트된 세트는 아래와 같습니다.

14 t=5에 해당하는 가장 작은 lowcost를 갖는 노드를 찾고, 선택된 간선과 노드는 아래와 같습니다.

15 ​​​​세트U에 추가되었습니다. 집합 U, U={1,2,3,4,5,7}에 노드 t를 추가하고 동시에 V-U={6}

16을 업데이트합니다. 집합 V-U에서 t의 각 인접 점 j에 대해 t의 도움으로 업데이트될 수 있습니다. 노드 5의 이웃은 노드 6입니다.

C[5][6]=17

업데이트된 세트는 아래와 같습니다.

17 t=6에 해당하는 가장 작은 저비용 노드를 찾습니다. 선택된 간선과 노드는 아래와 같습니다.

18이 세트 U에 추가되었습니다. 집합 U, U={1,2,3,4,5,6,7}에 노드 t를 추가하고 동시에 V-U={}

19를 업데이트합니다. 집합 V-U에서 t의 각 인접 점 j에 대해 t의 도움으로 업데이트될 수 있습니다. 노드 6에는 V-U 집합에 인접한 점이 없습니다. Nearest[] 및 lowcost[]를 업데이트할 필요가 없습니다.

20 획득한 최소 스패닝 트리는 다음과 같습니다. 최소 스패닝 트리의 가중치 합은 57입니다.

프라임 알고리즘 구현

1. 구성된 그래프


2. 테스트

추천 연구: "java 비디오 튜토리얼

"

위 내용은 Java에서 Prime 알고리즘의 원리와 구현(요약 공유)의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

자바의 제곱근 자바의 제곱근 Aug 30, 2024 pm 04:26 PM

자바의 제곱근 안내 여기서는 예제와 코드 구현을 통해 Java에서 Square Root가 어떻게 작동하는지 설명합니다.

자바의 완전수 자바의 완전수 Aug 30, 2024 pm 04:28 PM

Java의 완전수 가이드. 여기서는 정의, Java에서 완전 숫자를 확인하는 방법, 코드 구현 예제에 대해 논의합니다.

Java의 난수 생성기 Java의 난수 생성기 Aug 30, 2024 pm 04:27 PM

Java의 난수 생성기 안내. 여기서는 예제를 통해 Java의 함수와 예제를 통해 두 가지 다른 생성기에 대해 설명합니다.

자바의 웨카 자바의 웨카 Aug 30, 2024 pm 04:28 PM

Java의 Weka 가이드. 여기에서는 소개, weka java 사용 방법, 플랫폼 유형 및 장점을 예제와 함께 설명합니다.

Java의 스미스 번호 Java의 스미스 번호 Aug 30, 2024 pm 04:28 PM

Java의 Smith Number 가이드. 여기서는 정의, Java에서 스미스 번호를 확인하는 방법에 대해 논의합니다. 코드 구현의 예.

Java Spring 인터뷰 질문 Java Spring 인터뷰 질문 Aug 30, 2024 pm 04:29 PM

이 기사에서는 가장 많이 묻는 Java Spring 면접 질문과 자세한 답변을 보관했습니다. 그래야 면접에 합격할 수 있습니다.

Java 8 Stream foreach에서 나누거나 돌아 오시겠습니까? Java 8 Stream foreach에서 나누거나 돌아 오시겠습니까? Feb 07, 2025 pm 12:09 PM

Java 8은 스트림 API를 소개하여 데이터 컬렉션을 처리하는 강력하고 표현적인 방법을 제공합니다. 그러나 스트림을 사용할 때 일반적인 질문은 다음과 같은 것입니다. 기존 루프는 조기 중단 또는 반환을 허용하지만 스트림의 Foreach 메소드는이 방법을 직접 지원하지 않습니다. 이 기사는 이유를 설명하고 스트림 처리 시스템에서 조기 종료를 구현하기위한 대체 방법을 탐색합니다. 추가 읽기 : Java Stream API 개선 스트림 foreach를 이해하십시오 Foreach 메소드는 스트림의 각 요소에서 하나의 작업을 수행하는 터미널 작동입니다. 디자인 의도입니다

Java의 날짜까지의 타임스탬프 Java의 날짜까지의 타임스탬프 Aug 30, 2024 pm 04:28 PM

Java의 TimeStamp to Date 안내. 여기서는 소개와 예제와 함께 Java에서 타임스탬프를 날짜로 변환하는 방법에 대해서도 설명합니다.

See all articles