Java에서 이분법의 기본 아이디어와 구현을 간략하게 이해합니다.
이 기사에서는 java에 대한 관련 지식을 제공합니다. 이분법은 컴퓨터 검색 프로세스에서 자주 사용되는 매우 효율적인 알고리즘입니다. 다음에서는 이분법의 기본 아이디어와 구현을 예를 통해 자세히 설명하겠습니다. 모든 사람에게 도움이 되기를 바랍니다.
추천 학습: "java 비디오 튜토리얼"
순서 배열에서 특정 숫자가 존재하는지 확인
아이디어:
- 순서 배열이므로 먼저 얻을 수 있습니다. 포인트 위치, 중간점은 배열을 왼쪽과 오른쪽 절반으로 나눌 수 있습니다.
- 중점 위치 값이 목표 값과 같을 경우 중간점 위치를 직접 반환합니다.
- 중간점 위치의 값이 목표값보다 작을 경우 배열의 중간점을 기준으로 왼쪽으로 가서 같은 방법으로 검색합니다.
- 중간점 위치의 값이 목표값보다 큰 경우 배열의 중간점의 오른쪽을 잡아 같은 방법으로 검색합니다.
- 끝까지 찾을 수 없으면 -1을 반환합니다.
Code
class Solution { public int search(int[] arr, int t) { if (arr == null || arr.length < 1) { return -1; } int l = 0; int r = arr.length - 1; while (l <= r) { int m = l + ((r - l) >> 1); if (arr[m] == t) { return m; } else if (arr[m] > t) { r = m - 1; } else { l = m + 1; } } return -1; } }
시간 복잡도 O(logN)
. O(logN)
。
在一个有序数组中,找大于等于某个数最左侧的位置
示例 1:
输入: nums = [1,3,5,6], target = 5
输出: 2
说明:如果要在num
这个数组中插入 5 这个元素,应该是插入在元素 3 和 元素 5 之间的位置,即 2 号位置。
示例 2:
输入: nums = [1,3,5,6], target = 2
输出: 1
说明:如果要在num
这个数组中插入 2 这个元素,应该是插入在元素 1 和 元素 3 之间的位置,即 1 号位置。
示例 3:
输入: nums = [1,3,5,6], target = 7
输出: 4
说明:如果要在num
这个数组中插入 7 这个元素,应该是插入在数组末尾,即 4 号位置。
通过上述示例可以知道,这题本质上就是求在一个有序数组中,找大于等于某个数最左侧的位置,如果不存在,就返回数组长度(表示插入在最末尾位置)
我们只需要在上例基础上进行简单改动即可,上例中,我们找到满足条件的位置就直接return
了
if (arr[m] == t) { return m; }
在本问题中,因为要找到最左侧的位置,所以,在遇到相等的时候,只需要先把位置记录下来,不用直接返回,然后继续去左侧找是否还有满足条件的更左边的位置。
同时,在遇到arr[m] > t
条件下,也需要记录下此时的m
位置,因为这也可能是满足条件的位置。
代码:
class Solution { public static int searchInsert(int[] arr, int t) { int ans = arr.length; int l = 0; int r = arr.length - 1; while (l <= r) { int m = l + ((r - l)>>1); if (arr[m] >= t) { ans = m; r = m - 1; } else { l = m + 1; } } return ans; } }
整个算法的时间复杂度是O(logN)
。
在排序数组中查找元素的第一个和最后一个位置
思路
本题也是用二分来解,当通过二分找到某个元素的时候,不急着返回,而是继续往左(右)找,看能否找到更左(右)位置匹配的值。
代码如下:
class Solution { public static int[] searchRange(int[] arr, int t) { if (arr == null || arr.length < 1) { return new int[]{-1, -1}; } return new int[]{left(arr,t),right(arr,t)}; } public static int left(int[] arr, int t) { if (arr == null || arr.length < 1) { return -1; } int ans = -1; int l = 0; int r = arr.length - 1; while (l <= r) { int m = l + ((r - l) >> 1); if (arr[m] == t) { ans = m; r = m - 1; } else if (arr[m] < t) { l = m +1; } else { // arr[m] > t r = m - 1; } } return ans; } public static int right(int[] arr, int t) { if (arr == null || arr.length < 1) { return -1; } int ans = -1; int l = 0; int r = arr.length - 1; while (l <= r) { int m = l + ((r - l) >> 1); if (arr[m] == t) { ans = m; l = m + 1; } else if (arr[m] < t) { l = m +1; } else { // arr[m] > t r = m - 1; } } return ans; } }
时间复杂度 O(logN)
。
局部最大值问题
思路
假设数组长度为N
,首先判断0
号位置的数和N-1
位置的数是不是峰值位置。
0
号位置只需要和1
号位置比较,如果0
号位置大,0
号位置就是峰值位置,可以直接返回。
N-1
号位置只需要和N-2
号位置比较,如果N-1
号位置大,N-1
号位置就是峰值位置,可以直接返回。
如果0
号位置和N-1
在上轮比较中均是最小值,那么数组的样子必然是如下情况:
由上图可知,[0..1]
区间内是增长趋势, [N-2...N-1]
区间内是下降趋势。
那么峰值位置必在[1...N-2]
之间出现。
此时可以通过二分来找峰值位置,先来到中点位置,假设为mid
,如果中点位置的值比左右两边的值都大:
arr[mid] > arr[mid+1] && arr[mid] > arr[mid-1]
则mid

num< /code>이 배열에 삽입된 요소 5는 요소 3과 요소 5 사이, 즉 위치 2에 삽입되어야 합니다. 🎜🎜예 2:🎜🎜입력: nums = [1,3,5,6], target = 2🎜🎜출력: 1🎜🎜설명: <code>num
배열에 2를 삽입하려는 경우 요소는 요소 1과 요소 3 사이, 즉 위치 1에 삽입되어야 합니다. 🎜🎜예 3:🎜🎜입력: nums = [1,3,5,6], target = 7🎜🎜출력: 4🎜🎜설명: num
배열에 7을 삽입하려는 경우 요소는 배열의 끝, 즉 위치 4에 삽입되어야 합니다. 🎜🎜위의 예를 보면 이 질문의 본질은 순서 배열에서 특정 숫자보다 크거나 같은 가장 왼쪽 위치를 찾는 것임을 알 수 있습니다. 존재하지 않으면 배열의 길이를 반환합니다(표시). 마지막 위치에 삽입됨)🎜🎜위 예시를 토대로 간단한 변경만 하면 됩니다. 위 예시에서는 조건에 맞는 위치를 찾으면 바로 return<을 합니다. /code>🎜public class LeetCode_0162_FindPeakElement {
public static int findPeakElement(int[] nums) {
if (nums.length == 1) {
return 0;
}
int l = 0;
int r = nums.length - 1;
if (nums[l] > nums[l + 1]) {
return l;
}
if (nums[r] > nums[r - 1]) {
return r;
}
l = l + 1;
r = r - 1;
while (l <= r) {
int mid = l + ((r - l) >> 1);
if (nums[mid] > nums[mid + 1] && nums[mid] > nums[mid - 1]) {
return mid;
}
if (nums[mid] < nums[mid + 1]) {
l = mid + 1;
} else if (nums[mid] < nums[mid - 1]) {
r = mid - 1;
}
}
return -1;
}
}
로그인 후 복사로그인 후 복사🎜 이 질문에서는 가장 왼쪽 위치를 찾아야 하므로동등할 때 직접 반환하지 않고 먼저 위치만 기록한 다음 계속해서 왼쪽으로 이동하여 위치가 있는지 확인하면 됩니다. 조건을 충족하는 왼쪽 위치입니다. 🎜🎜동시에 arr[m] > t
가 나타나면 m
위치도 기록해야 합니다. 조건을 만족하는 곳이기도 합니다. 🎜🎜코드: 🎜rrreee🎜전체 알고리즘의 시간 복잡도는 O(logN)
입니다. 🎜🎜정렬된 배열에서 요소의 첫 번째 위치와 마지막 위치 찾기🎜🎜
🎜🎜Thinking🎜🎜이 문제도 이진 나누기로 해결됩니다. 이진 나누기를 통해 요소를 찾았을 때, 서두르지 말고 계속해서 왼쪽(오른쪽)으로 검색하여 더 찾을 수 있는지 확인하세요. 왼쪽(오른쪽) ) 위치 일치 값. 🎜🎜코드는 다음과 같습니다: 🎜rrreee🎜시간 복잡도 O(logN)
. 🎜🎜로컬 최대 문제🎜🎜
🎜🎜Ideas🎜🎜 가정 배열의 길이가 N
인지 확인하려면 먼저 0
위치의 숫자와 N-1
위치의 숫자가 피크 위치인지 확인하세요. 🎜🎜0
위치는 1
위치와 비교하면 됩니다. 0
위치가 더 크면 0</ code> position 피크 위치이며 직접 반환될 수 있습니다. 🎜🎜<code>N-1
위치는 N-2
위치와 비교하면 됩니다. N-1
위치가 더 크면 < code>N Position -1
은 피크 위치이며 직접 반환될 수 있습니다. 🎜🎜마지막 비교 라운드에서 0
위치와 N-1
이 모두 최소값인 경우 배열은 다음과 같아야 합니다. 🎜🎜
[ 0..1]</ code> 간격은 증가 추세이고, <code>[N-2...N-1]
간격은 감소 추세입니다. 🎜🎜그러면 피크 위치는 [1...N-2]
사이에 나타나야 합니다. 🎜🎜이때, 이등분을 통해 정점 위치를 찾을 수 있습니다. 먼저 중간점 위치의 값이 더 크다면 중간
이라고 가정하고 중간점 위치로 이동합니다. 왼쪽과 오른쪽 값보다 :🎜rrreee🎜 mid
위치가 피크 위치로 바로 반환됩니다. 🎜🎜그렇지 않으면 다음 두 가지 상황이 있습니다. 🎜🎜사례 1: 중간 위치의 값이 중간 - 1 위치의 값보다 작습니다🎜趋势如下图:
则在[1...(mid-1)]
区间内继续二分。
情况二:mid 位置的值比 mid + 1 位置的值小
趋势是:
则在[(mid+1)...(N-2)]
区间内继续上述二分。
完整代码
public class LeetCode_0162_FindPeakElement { public static int findPeakElement(int[] nums) { if (nums.length == 1) { return 0; } int l = 0; int r = nums.length - 1; if (nums[l] > nums[l + 1]) { return l; } if (nums[r] > nums[r - 1]) { return r; } l = l + 1; r = r - 1; while (l <= r) { int mid = l + ((r - l) >> 1); if (nums[mid] > nums[mid + 1] && nums[mid] > nums[mid - 1]) { return mid; } if (nums[mid] < nums[mid + 1]) { l = mid + 1; } else if (nums[mid] < nums[mid - 1]) { r = mid - 1; } } return -1; } }
时间复杂度O(logN)
。
推荐学习:《java视频教程》
위 내용은 Java에서 이분법의 기본 아이디어와 구현을 간략하게 이해합니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Java 8은 스트림 API를 소개하여 데이터 컬렉션을 처리하는 강력하고 표현적인 방법을 제공합니다. 그러나 스트림을 사용할 때 일반적인 질문은 다음과 같은 것입니다. 기존 루프는 조기 중단 또는 반환을 허용하지만 스트림의 Foreach 메소드는이 방법을 직접 지원하지 않습니다. 이 기사는 이유를 설명하고 스트림 처리 시스템에서 조기 종료를 구현하기위한 대체 방법을 탐색합니다. 추가 읽기 : Java Stream API 개선 스트림 foreach를 이해하십시오 Foreach 메소드는 스트림의 각 요소에서 하나의 작업을 수행하는 터미널 작동입니다. 디자인 의도입니다

PHP는 서버 측에서 널리 사용되는 스크립팅 언어이며 특히 웹 개발에 적합합니다. 1.PHP는 HTML을 포함하고 HTTP 요청 및 응답을 처리 할 수 있으며 다양한 데이터베이스를 지원할 수 있습니다. 2.PHP는 강력한 커뮤니티 지원 및 오픈 소스 리소스를 통해 동적 웹 컨텐츠, 프로세스 양식 데이터, 액세스 데이터베이스 등을 생성하는 데 사용됩니다. 3. PHP는 해석 된 언어이며, 실행 프로세스에는 어휘 분석, 문법 분석, 편집 및 실행이 포함됩니다. 4. PHP는 사용자 등록 시스템과 같은 고급 응용 프로그램을 위해 MySQL과 결합 할 수 있습니다. 5. PHP를 디버깅 할 때 error_reporting () 및 var_dump ()와 같은 함수를 사용할 수 있습니다. 6. 캐싱 메커니즘을 사용하여 PHP 코드를 최적화하고 데이터베이스 쿼리를 최적화하며 내장 기능을 사용하십시오. 7

PHP와 Python은 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1.PHP는 간단한 구문과 높은 실행 효율로 웹 개발에 적합합니다. 2. Python은 간결한 구문 및 풍부한 라이브러리를 갖춘 데이터 과학 및 기계 학습에 적합합니다.

PHP는 특히 빠른 개발 및 동적 컨텐츠를 처리하는 데 웹 개발에 적합하지만 데이터 과학 및 엔터프라이즈 수준의 애플리케이션에는 적합하지 않습니다. Python과 비교할 때 PHP는 웹 개발에 더 많은 장점이 있지만 데이터 과학 분야에서는 Python만큼 좋지 않습니다. Java와 비교할 때 PHP는 엔터프라이즈 레벨 애플리케이션에서 더 나빠지지만 웹 개발에서는 더 유연합니다. JavaScript와 비교할 때 PHP는 백엔드 개발에서 더 간결하지만 프론트 엔드 개발에서는 JavaScript만큼 좋지 않습니다.

PHP와 Python은 각각 고유 한 장점이 있으며 다양한 시나리오에 적합합니다. 1.PHP는 웹 개발에 적합하며 내장 웹 서버 및 풍부한 기능 라이브러리를 제공합니다. 2. Python은 간결한 구문과 강력한 표준 라이브러리가있는 데이터 과학 및 기계 학습에 적합합니다. 선택할 때 프로젝트 요구 사항에 따라 결정해야합니다.

캡슐은 3 차원 기하학적 그림이며, 양쪽 끝에 실린더와 반구로 구성됩니다. 캡슐의 부피는 실린더의 부피와 양쪽 끝에 반구의 부피를 첨가하여 계산할 수 있습니다. 이 튜토리얼은 다른 방법을 사용하여 Java에서 주어진 캡슐의 부피를 계산하는 방법에 대해 논의합니다. 캡슐 볼륨 공식 캡슐 볼륨에 대한 공식은 다음과 같습니다. 캡슐 부피 = 원통형 볼륨 2 반구 볼륨 안에, R : 반구의 반경. H : 실린더의 높이 (반구 제외). 예 1 입력하다 반경 = 5 단위 높이 = 10 단위 산출 볼륨 = 1570.8 입방 단위 설명하다 공식을 사용하여 볼륨 계산 : 부피 = π × r2 × h (4

phphassignificallyimpactedwebdevelopmentandextendsbeyondit

PHP가 많은 웹 사이트에서 선호되는 기술 스택 인 이유에는 사용 편의성, 강력한 커뮤니티 지원 및 광범위한 사용이 포함됩니다. 1) 배우고 사용하기 쉽고 초보자에게 적합합니다. 2) 거대한 개발자 커뮤니티와 풍부한 자원이 있습니다. 3) WordPress, Drupal 및 기타 플랫폼에서 널리 사용됩니다. 4) 웹 서버와 밀접하게 통합하여 개발 배포를 단순화합니다.
