Node의 프로세스 간 통신에 대해 이야기하는 기사
프로세스 간 통신은 어떻게 하나요? 다음 글에서는 Node 프로세스간 통신의 원리를 소개하겠습니다. 도움이 되셨으면 좋겠습니다!
전제 지식
파일 설명자
리눅스 시스템에서는 모든 것이 파일로 취급되며 프로세스가 기존 파일을 열면 파일 설명자가 반환됩니다. 파일 설명자는 프로세스에 의해 열린 파일을 관리하기 위해 운영 체제에서 생성된 인덱스이며 열린 파일을 가리키는 데 사용됩니다. 프로세스가 시작되면 운영 체제는 각 프로세스에 PCB 제어 블록을 할당합니다. PCB에는 현재 프로세스의 모든 파일 설명자, 즉 현재 프로세스에서 열린 모든 파일을 저장하는 파일 설명자 테이블이 있습니다.
프로세스의 파일 설명자는 시스템 파일과 어떻게 일치합니까? 커널에서 시스템은 두 개의 다른 테이블을 유지 관리합니다.
- Open 파일 테이블
- i-node 테이블(i-node 테이블)
파일 설명자는 0부터 시작하여 0/씩 증가하는 배열의 첨자입니다. 1/2는 기본적으로 입력/출력/오류 스트림의 파일 설명자입니다. PCB에 유지되는 파일 설명 테이블에서는 파일 설명자와 해당 오픈 파일 테이블을 기반으로 해당 파일 포인터를 찾을 수 있습니다. 열린 파일 테이블은 다음을 유지합니다: 파일 오프셋(파일을 읽고 쓸 때 업데이트됨), i-노드 테이블에 대한 파일 포인터에 대한 상태 식별자 실제로 파일을 조작하려면 i-node 테이블에 의존하여 실제 파일에 대한 관련 정보를 얻어야 합니다
그들 사이의 관계
Illustration
- 프로세스 A에서는 파일 디스크립터 1/20은 모두 동일한 열린 파일 테이블 항목 23을 가리킵니다. 이는 동일한 파일에서 열기 함수를 여러 번 호출하여 발생할 수 있습니다. 프로세스 A/B의 파일 설명자 2가 모두 동일한 파일을 가리킬 수 있습니다. 프로세스 A의 파일 설명자 0과 프로세스 B의 파일 설명자는 서로 다른 열린 파일 테이블 항목을 가리키지만 이러한 테이블 항목은 다음을 가리킵니다. 동일한 파일, 이는 A/B일 수 있습니다. 프로세스가 각각 동일한 파일에 대한 공개 호출을 시작했습니다
- 요약
동일 프로세스의 서로 다른 파일 설명자가 동일한 파일을 가리킬 수 있습니다.
다양한 프로세스가 동일한 파일을 가질 수 있습니다. 파일 설명자- 다른 프로세스의 동일한 파일 설명자가 다른 파일을 가리킬 수 있음
- 다른 프로세스의 서로 다른 파일 설명자가 동일한 파일을 가리킬 수 있음
- 파일 설명자의 리디렉션
프로세스를 읽거나 쓸 때마다 파일 설명자로 시작하여 해당 항목을 찾습니다. 파일 테이블 항목을 열고 해당 i-node 테이블을 찾습니다. 파일 설명자 리디렉션을 구현하는 방법은 무엇입니까? 해당 파일 포인터는 파일 설명자 테이블에서 찾을 수 있기 때문입니다. 파일 포인터를 변경하면 다음 두 테이블의 내용도 변경됩니까? 예를 들어, 파일 설명자 1은 모니터를 가리키고, 파일 설명자 1은 log.txt 파일을 가리킨 다음, 파일 설명자 1은 log.txt
파일 설명자의 쉘 리디렉션에 해당합니다. > , 및
c 함수는 파일 설명자를 리디렉션합니다
cat hello.txt
时,默认会将结果输出到显示器上,使用 > 来重定向。cat hello.txt 1 > log.txt
int main(int argc, char const *argv[])
{
int fd = open("log.txt");
int copyFd = dup(fd);
//将fd阅读文件置于文件末尾,计算偏移量。
cout <strong></strong>
로그인 후 복사
int main(int argc, char const *argv[]) { int fd = open("log.txt"); int copyFd = dup(fd); //将fd阅读文件置于文件末尾,计算偏移量。 cout <strong></strong>
dup(3)을 호출하면 새로운 최소 설명자 4가 열립니다. 이 4는 3이 가리키는 파일을 가리킵니다. fd에 대한 모든 작업은 파일을 수정합니다
dup2
dup2 기능 포인트 oldfd가 가리키는 파일에 지정된 newfd를 추가합니다. dup2 실행 후 newfd와 oldfd가 동시에 동일한 파일을 가리키며 파일 오프셋 및 파일 상태를 공유합니다
int main(int argc, char const *argv[]) { int fd = open("log.txt"); int copyFd = dup(fd); //将fd阅读文件置于文件末尾,计算偏移量。 cout <p></p><h2 id="strong-Node中通信原理-strong"><strong>Node中通信原理</strong></h2><p>Node 中的 IPC 通道具体实现是由 <a href="https://link.juejin.cn?target=https%3A%2F%2Fluohaha.github.io%2FChinese-uvbook%2Fsource%2Fintroduction.html" target="_blank" rel="nofollow noopener noreferrer" title="https://luohaha.github.io/Chinese-uvbook/source/introduction.html" ref="nofollow noopener noreferrer">libuv</a> 提供的。根据系统的不同实现方式不同,window 下采用命名管道实现,*nix 下采用 Domain Socket 实现。在应用层只体现为 message 事件和 send 方法。【相关教程推荐:<a href="https://www.php.cn/course/list/24.html" target="_blank">nodejs视频教程</a>】</p><p><img src="/static/imghw/default1.png" data-src="https://img.php.cn/upload/image/370/681/147/1662375066320124.png" class="lazy" title="166237505660155Node의 프로세스 간 통신에 대해 이야기하는 기사" alt="Node의 프로세스 간 통신에 대해 이야기하는 기사"></p><p>父进程在实际创建子进程之前,会创建 IPC 通道并监听它,等到创建出真实的子进程后,通过环境变量(NODE_CHANNEL_FD)告诉子进程该 IPC 通道的文件描述符。</p><p>子进程在启动的过程中,会根据该文件描述符去连接 IPC 通道,从而完成父子进程的连接。</p><p>建立连接之后可以自由的通信了,IPC 通道是使用命名管道或者 Domain Socket 创建的,属于双向通信。并且它是在系统内核中完成的进程通信</p><p><img src="/static/imghw/default1.png" data-src="https://img.php.cn/upload/image/370/681/147/1662375066320124.png" class="lazy" title="166237506175944Node의 프로세스 간 통신에 대해 이야기하는 기사" alt="Node의 프로세스 간 통신에 대해 이야기하는 기사"></p><p>⚠️ 只有在启动的子进程是 Node 进程时,子进程才会根据环境变量去连接对应的 IPC 通道,对于其他类型的子进程则无法实现进程间通信,除非其他进程也按着该约定去连接这个 IPC 通道。</p><h3 id="strong-unix-domain-socket-strong"><strong>unix domain socket</strong></h3><h4 id="strong-是什么-strong"><strong>是什么</strong></h4><p>我们知道经典的通信方式是有 Socket,我们平时熟知的 Socket 是基于网络协议的,用于两个不同主机上的两个进程通信,通信需要指定 IP/Host 等。 但如果我们同一台主机上的两个进程想要通信,如果使用 Socket 需要指定 IP/Host,经过网络协议等,会显得过于繁琐。所以 Unix Domain Socket 诞生了。</p><p>UDS 的优势:</p>
- 绑定 socket 文件而不是绑定 IP/Host;不需要经过网络协议,而是数据的拷贝
- 也支持 SOCK_STREAM(流套接字)和 SOCK_DGRAM(数据包套接字),但由于是在本机通过内核通信,不会丢包也不会出现发送包的次序和接收包的次序不一致的问题
如何实现
流程图
Server 端
int main(int argc, char *argv[]) { int server_fd ,ret, client_fd; struct sockaddr_un serv, client; socklen_t len = sizeof(client); char buf[1024] = {0}; int recvlen; // 创建 socket server_fd = socket(AF_LOCAL, SOCK_STREAM, 0); // 初始化 server 信息 serv.sun_family = AF_LOCAL; strcpy(serv.sun_path, "server.sock"); // 绑定 ret = bind(server_fd, (struct sockaddr *)&serv, sizeof(serv)); //设置监听,设置能够同时和服务端连接的客户端数量 ret = listen(server_fd, 36); //等待客户端连接 client_fd = accept(server_fd, (struct sockaddr *)&client, &len); printf("=====client bind file:%s\n", client.sun_path); while (1) { recvlen = recv(client_fd, buf, sizeof(buf), 0); if (recvlen == -1) { perror("recv error"); return -1; } else if (recvlen == 0) { printf("client disconnet...\n"); close(client_fd); break; } else { printf("recv buf %s\n", buf); send(client_fd, buf, recvlen, 0); } } close(client_fd); close(server_fd); return 0; }
Client 端
int main(int argc, char *argv[]) { int client_fd ,ret; struct sockaddr_un serv, client; socklen_t len = sizeof(client); char buf[1024] = {0}; int recvlen; //创建socket client_fd = socket(AF_LOCAL, SOCK_STREAM, 0); //给客户端绑定一个套接字文件 client.sun_family = AF_LOCAL; strcpy(client.sun_path, "client.sock"); ret = bind(client_fd, (struct sockaddr *)&client, sizeof(client)); //初始化server信息 serv.sun_family = AF_LOCAL; strcpy(serv.sun_path, "server.sock"); //连接 connect(client_fd, (struct sockaddr *)&serv, sizeof(serv)); while (1) { fgets(buf, sizeof(buf), stdin); send(client_fd, buf, strlen(buf)+1, 0); recv(client_fd, buf, sizeof(buf), 0); printf("recv buf %s\n", buf); } close(client_fd); return 0; }
命名管道(Named Pipe)
是什么
命名管道是可以在同一台计算机的不同进程之间,或者跨越一个网络的不同计算机的不同进程之间的可靠的单向或者双向的数据通信。 创建命名管道的进程被称为管道服务端(Pipe Server),连接到这个管道的进程称为管道客户端(Pipe Client)。
命名管道的命名规范:\server\pipe[\path]\name
- 其中 server 指定一个服务器的名字,本机适用 \. 表示,\192.10.10.1 表示网络上的服务器
- \pipe 是一个不可变化的字串,用于指定该文件属于 NPFS(Named Pipe File System)
- [\path]\name 是唯一命名管道名称的标识
怎么实现
流程图
Pipe Server
void ServerTest() { HANDLE serverNamePipe; char pipeName[MAX_PATH] = {0}; char szReadBuf[MAX_BUFFER] = {0}; char szWriteBuf[MAX_BUFFER] = {0}; DWORD dwNumRead = 0; DWORD dwNumWrite = 0; strcpy(pipeName, "\\\\.\\pipe\\shuangxuPipeTest"); // 创建管道实例 serverNamePipe = CreateNamedPipeA(pipeName, PIPE_ACCESS_DUPLEX|FILE_FLAG_WRITE_THROUGH, PIPE_TYPE_BYTE|PIPE_READMODE_BYTE|PIPE_WAIT, PIPE_UNLIMITED_INSTANCES, 0, 0, 0, NULL); WriteLog("创建管道成功..."); // 等待客户端连接 BOOL bRt= ConnectNamedPipe(serverNamePipe, NULL ); WriteLog( "收到客户端的连接成功..."); // 接收数据 memset( szReadBuf, 0, MAX_BUFFER ); bRt = ReadFile(serverNamePipe, szReadBuf, MAX_BUFFER-1, &dwNumRead, NULL ); // 业务逻辑处理 (只为测试用返回原来的数据) WriteLog( "收到客户数据:[%s]", szReadBuf); // 发送数据 if( !WriteFile(serverNamePipe, szWriteBuf, dwNumRead, &dwNumWrite, NULL ) ) { WriteLog("向客户写入数据失败:[%#x]", GetLastError()); return ; } WriteLog("写入数据成功..."); }
Pipe Client
void ClientTest() { char pipeName[MAX_PATH] = {0}; HANDLE clientNamePipe; DWORD dwRet; char szReadBuf[MAX_BUFFER] = {0}; char szWriteBuf[MAX_BUFFER] = {0}; DWORD dwNumRead = 0; DWORD dwNumWrite = 0; strcpy(pipeName, "\\\\.\\pipe\\shuangxuPipeTest"); // 检测管道是否可用 if(!WaitNamedPipeA(pipeName, 10000)){ WriteLog("管道[%s]无法打开", pipeName); return ; } // 连接管道 clientNamePipe = CreateFileA(pipeName, GENERIC_READ|GENERIC_WRITE, 0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); WriteLog("管道连接成功..."); scanf( "%s", szWritebuf ); // 发送数据 if( !WriteFile(clientNamePipe, szWriteBuf, strlen(szWriteBuf), &dwNumWrite, NULL)){ WriteLog("发送数据失败,GetLastError=[%#x]", GetLastError()); return ; } printf("发送数据成功:%s\n", szWritebuf ); // 接收数据 if( !ReadFile(clientNamePipe, szReadBuf, MAX_BUFFER-1, &dwNumRead, NULL)){ WriteLog("接收数据失败,GetLastError=[%#x]", GetLastError() ); return ; } WriteLog( "接收到服务器返回:%s", szReadBuf ); // 关闭管道 CloseHandle(clientNamePipe); }
Node 创建子进程的流程
Unix
对于创建子进程、创建管道、重定向管道均是在 c++ 层实现的
创建子进程
int main(int argc,char *argv[]){ pid_t pid = fork(); if (pid <h4 id="strong-创建管道-strong"><strong>创建管道</strong></h4><p>使用 socketpair 创建管道,其创建出来的管道是全双工的,返回的文件描述符中的任何一个都可读和可写</p><pre class="brush:php;toolbar:false">int main () { int fd[2]; int r = socketpair(AF_UNIX, SOCK_STREAM, 0, fd); if (fork()){ /* 父进程 */ int val = 0; close(fd[1]); while (1){ sleep(1); ++val; printf("发送数据: %d\n", val); write(fd[0], &val, sizeof(val)); read(fd[0], &val, sizeof(val)); printf("接收数据: %d\n", val); } } else { /*子进程*/ int val; close(fd[0]); while(1){ read(fd[1], &val, sizeof(val)); ++val; write(fd[1], &val, sizeof(val)); } } }
当我们使用 socketpair 创建了管道之后,父进程关闭了 fd[1],子进程关闭了 fd[0]。子进程可以通过 fd[1] 读写数据;同理主进程通过 fd[0]读写数据完成通信。
对应代码:https://github.com/nodejs/node/blob/main/deps/uv/src/unix/process.c#L344
child_process.fork 的详细调用
fork 函数开启一个子进程的流程
-
初始化参数中的 options.stdio,并且调用 spawn 函数
function spawn(file, args, options) { const child = new ChildProcess(); child.spawn(options); }
로그인 후 복사 -
创建 ChildProcess 实例,创建子进程也是调用 C++ 层 this._handle.spawn 方法
function ChildProcess() { // C++层定义 this._handle = new Process(); }
로그인 후 복사 -
通过 child.spawn 调用到 ChildProcess.prototype.spawn 方法中。其中 getValidStdio 方法会根据 options.stdio 创建和 C++ 交互的 Pipe 对象,并获得对应的文件描述符,将文件描述符写入到环境变量 NODE_CHANNEL_FD 中,调用 C++ 层创建子进程,在调用 setupChannel 方法
ChildProcess.prototype.spawn = function(options) { // 预处理进程间通信的数据结构 stdio = getValidStdio(stdio, false); const ipc = stdio.ipc; const ipcFd = stdio.ipcFd; //将文件描述符写入环境变量中 if (ipc !== undefined) { ArrayPrototypePush(options.envPairs, `NODE_CHANNEL_FD=${ipcFd}`); } // 创建进程 const err = this._handle.spawn(options); // 添加send方法和监听IPC中数据 if (ipc !== undefined) setupChannel(this, ipc, serialization); }
로그인 후 복사 -
子进程启动时,会根据环境变量中是否存在 NODE_CHANNEL_FD 判断是否调用 _forkChild 方法,创建一个 Pipe 对象, 同时调用 open 方法打开对应的文件描述符,在调用setupChannel
function _forkChild(fd, serializationMode) { const p = new Pipe(PipeConstants.IPC); p.open(fd); p.unref(); const control = setupChannel(process, p, serializationMode); }
로그인 후 복사
句柄传递
setupChannel 主要是完成了处理接收的消息、发送消息、处理文件描述符传递等
function setipChannel(){ channel.onread = function(arrayBuffer){ //... } target.on('internalMessage', function(message, handle){ //... }) target.send = function(message, handle, options, callback){ //... } target._send = function(message, handle, options, callback){ //... } function handleMessage(message, handle, internal){ //... } }
- target.send: process.send 方法,这里 target 就是进程对象本身.
- target._send: 执行具体 send 逻辑的函数, 当参数 handle 不存在时, 表示普通的消息传递;若存在,包装为内部对象,表明是一个 internalMessage 事件触发。调用使用JSON.stringify 序列化对象, 使用channel.writeUtf8String 写入文件描述符中
- channel.onread: 获取到数据时触发, 跟 channel.writeUtf8String 相对应。通过 JSON.parse 反序列化 message 之后, 调用 handleMessage 进而触发对应事件
- handleMessage: 用来判断是触发 message 事件还是 internalMessage 事件
- target.on('internalMessage'): 针对内部对象做特殊处理,在调用 message 事件
进程间消息传递
父进程通过 child.send 发送消息 和 server/socket 句柄对象
-
普通消息直接 JSON.stringify 序列化;对于句柄对象来说,需要先包装成为内部对象
message = { cmd: 'NODE_HANDLE', type: null, msg: message };
로그인 후 복사通过 handleConversion.[message.type].send 的方法取出句柄对象对应的 C++ 层面的 TCP 对象,在采用JSON.stringify 序列化
const handleConversion = { 'net.Server': { simultaneousAccepts: true, send(message, server, options) { return server._handle; }, got(message, handle, emit) { const server = new net.Server(); server.listen(handle, () => { emit(server); }); } } //.... }
로그인 후 복사 最后将序列化后的内部对象和 TCP 对象写入到 IPC 通道中
子进程在接收到消息之后,使用 JSON.parse 反序列化消息,如果为内部对象触发 internalMessage 事件
检查是否带有 TCP 对象,通过 handleConversion.[message.type].got 得到和父进程一样的句柄对象
最后发触发 message 事件传递处理好的消息和句柄对象,子进程通过 process.on 接收
更多node相关知识,请访问:nodejs 教程!
위 내용은 Node의 프로세스 간 통신에 대해 이야기하는 기사의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











explorer.exe는 어떤 프로세스인가요? 우리는 Windows 운영체제를 사용하다 보면 "explorer.exe"라는 용어를 자주 듣게 됩니다. 이 기사에서는 explorer.exe 프로세스가 무엇인지, 그 기능과 효과에 대해 자세히 설명합니다. 우선 explorer.exe는 Windows 운영체제의 핵심 프로세스로 Windows 탐색기(Window)를 관리하고 제어하는 역할을 합니다.

ccsvchst.exe는 SEP(Symantec Endpoint Protection) 소프트웨어의 일부인 공통 프로세스 파일이며, SEP는 잘 알려진 네트워크 보안 회사인 Symantec이 개발한 엔드포인트 보호 솔루션입니다. 소프트웨어의 일부로 ccsvchst.exe는 SEP 관련 프로세스를 관리하고 모니터링하는 역할을 담당합니다. 먼저 SymantecEndpointProtection(

Non-Blocking, Event-Driven 기반으로 구축된 Node 서비스는 메모리 소모가 적다는 장점이 있으며, 대규모 네트워크 요청을 처리하는데 매우 적합합니다. 대규모 요청을 전제로 '메모리 제어'와 관련된 문제를 고려해야 합니다. 1. V8의 가비지 수집 메커니즘과 메모리 제한 Js는 가비지 수집 기계에 의해 제어됩니다.

파일 모듈은 파일 읽기/쓰기/열기/닫기/삭제 추가 등과 같은 기본 파일 작업을 캡슐화한 것입니다. 파일 모듈의 가장 큰 특징은 모든 메소드가 **동기** 및 ** 두 가지 버전을 제공한다는 것입니다. 비동기**, sync 접미사가 있는 메서드는 모두 동기화 메서드이고, 없는 메서드는 모두 이기종 메서드입니다.

Linux 시스템에서 좀비 프로세스는 종료되었지만 여전히 시스템에 남아 있는 특수 프로세스입니다. 좀비 프로세스는 리소스를 많이 소모하지 않지만 너무 많으면 시스템 리소스가 고갈될 수 있다. 이 기사에서는 시스템의 정상적인 작동을 보장하기 위해 좀비 프로세스를 올바르게 제거하는 방법을 소개합니다. 1Linux 좀비 프로세스 자식 프로세스가 작업을 완료한 후 부모 프로세스가 제때에 상태를 확인하지 않으면 자식 프로세스는 좀비 프로세스가 됩니다. 하위 프로세스는 상위 프로세스의 확인을 기다리고 있으며 시스템은 완료될 때까지 이를 재활용하지 않습니다. 그렇지 않으면 좀비 프로세스가 시스템에서 계속 정지됩니다. 시스템에 좀비 프로세스가 있는지 확인하려면 top 명령을 실행하여 실행 중인 모든 프로세스와 가능한 좀비 프로세스를 볼 수 있습니다. 'top' 명령의 결과는 Linux의 위 그림에서 확인할 수 있습니다.

Linux 프로세스 우선순위 조정 방법에 대한 자세한 설명 Linux 시스템에서는 프로세스의 우선순위에 따라 시스템의 실행 순서와 리소스 할당이 결정됩니다. 프로세스의 우선순위를 합리적으로 조정하면 시스템의 성능과 효율성을 향상시킬 수 있습니다. 이 기사에서는 Linux에서 프로세스 우선순위를 조정하는 방법을 자세히 소개하고 구체적인 코드 예제를 제공합니다. 1. 프로세스 우선순위 개요 Linux 시스템에서 각 프로세스에는 그에 연관된 우선순위가 있습니다. 우선순위 범위는 일반적으로 -20~19입니다. 여기서 -20은 가장 높은 우선순위를 나타내고 19는

Windows 11 및 Windows 10에서 작업 관리자 프로세스 업데이트를 일시 중지하는 방법 CTRL+창 키+Delete를 눌러 작업 관리자를 엽니다. 기본적으로 작업 관리자는 프로세스 창을 엽니다. 여기에서 볼 수 있듯이 모든 앱은 끝없이 돌아다니기 때문에 선택하려고 할 때 아래로 가리키는 것이 어려울 수 있습니다. 따라서 CTRL을 길게 누르면 작업 관리자가 일시 중지됩니다. 여전히 앱을 선택하고 아래로 스크롤할 수도 있지만 항상 CTRL 버튼을 누르고 있어야 합니다.

Pinetwork 노드에 대한 자세한 설명 및 설치 안내서이 기사에서는 Pinetwork Ecosystem을 자세히 소개합니다. Pi 노드, Pinetwork 생태계의 주요 역할을 수행하고 설치 및 구성을위한 전체 단계를 제공합니다. Pinetwork 블록 체인 테스트 네트워크가 출시 된 후, PI 노드는 다가오는 주요 네트워크 릴리스를 준비하여 테스트에 적극적으로 참여하는 많은 개척자들의 중요한 부분이되었습니다. 아직 Pinetwork를 모른다면 Picoin이 무엇인지 참조하십시오. 리스팅 가격은 얼마입니까? PI 사용, 광업 및 보안 분석. Pinetwork 란 무엇입니까? Pinetwork 프로젝트는 2019 년에 시작되었으며 독점적 인 Cryptocurrency Pi Coin을 소유하고 있습니다. 이 프로젝트는 모든 사람이 참여할 수있는 사람을 만드는 것을 목표로합니다.
