Python을 사용하여 KNN 분류 알고리즘 처리

WBOY
풀어 주다: 2022-09-07 20:21:24
앞으로
1527명이 탐색했습니다.

【相关推荐:Python3视频教程

KNN分类算法的介绍

KNN分类算法(K-Nearest-Neighbors Classification),又叫K近邻算法,是一个概念极其简单,而分类效果又很优秀的分类算法。

他的核心思想就是,要确定测试样本属于哪一类,就寻找所有训练样本中与该测试样本“距离”最近的前K个样本,然后看这K个样本大部分属于哪一类,那么就认为这个测试样本也属于哪一类。简单的说就是让最相似的K个样本来投票决定。

这里所说的距离,一般最常用的就是多维空间的欧式距离。这里的维度指特征维度,即样本有几个特征就属于几维。

KNN示意图如下所示。(图片来源:百度百科)

上图中要确定测试样本绿色属于蓝色还是红色。

显然,当K=3时,将以1:2的投票结果分类于红色;而K=5时,将以3:2的投票结果分类于蓝色。

KNN算法简单有效,但没有优化的暴力法效率容易达到瓶颈。如样本个数为N,特征维度为D的时候,该算法时间复杂度呈O(DN)增长。

所以通常KNN的实现会把训练数据构建成K-D Tree(K-dimensional tree),构建过程很快,甚至不用计算D维欧氏距离,而搜索速度高达O(D*log(N))。

不过当D维度过高,会产生所谓的”维度灾难“,最终效率会降低到与暴力法一样。

因此通常D>20以后,最好使用更高效率的Ball-Tree,其时间复杂度为O(D*log(N))。

人们经过长期的实践发现KNN算法虽然简单,但能处理大规模的数据分类,尤其适用于样本分类边界不规则的情况。最重要的是该算法是很多高级机器学习算法的基础。

当然,KNN算法也存在一切问题。比如如果训练数据大部分都属于某一类,投票算法就有很大问题了。这时候就需要考虑设计每个投票者票的权重了。

测试数据

测试数据的格式仍然和前面使用的身高体重数据一致。不过数据稍微增加了一些

1.5 40 thin
1.5 50 fat
1.5 60 fat
1.6 40 thin
1.6 50 thin
1.6 60 fat
1.6 70 fat
1.7 50 thin
1.7 60 thin
1.7 70 fat
1.7 80 fat
1.8 60 thin
1.8 70 thin
1.8 80 fat
1.8 90 fat
1.9 80 thin
1.9 90 fat
로그인 후 복사

Python代码实现

scikit-learn提供了优秀的KNN算法支持。

import numpy as np
from sklearn import neighbors
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import classification_report
from sklearn.cross_validation import train_test_split
import matplotlib.pyplot as plt
 
''' 数据读入 '''
data = []
labels = []
with open("data\\1.txt") as ifile:
 for line in ifile:
  tokens = line.strip().split(' ')
  data.append([float(tk) for tk in tokens[:-1]])
  labels.append(tokens[-1])
x = np.array(data)
labels = np.array(labels)
y = np.zeros(labels.shape)
 
''' 标签转换为0/1 '''
y[labels=='fat']=1
 
''' 拆分训练数据与测试数据 '''
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)
 
''' 创建网格以方便绘制 '''
h = .01
x_min, x_max = x[:, 0].min() - 0.1, x[:, 0].max() + 0.1
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
   np.arange(y_min, y_max, h))
 
''' 训练KNN分类器 '''
clf = neighbors.KNeighborsClassifier(algorithm='kd_tree')
clf.fit(x_train, y_train)
 
'''测试结果的打印'''
answer = clf.predict(x)
print(x)
print(answer)
print(y)
print(np.mean( answer == y))
 
'''准确率与召回率'''
precision, recall, thresholds = precision_recall_curve(y_train, clf.predict(x_train))
answer = clf.predict_proba(x)[:,1]
print(classification_report(y, answer, target_names = ['thin', 'fat']))
 
''' 将整个测试空间的分类结果用不同颜色区分开'''
answer = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:,1]
z = answer.reshape(xx.shape)
plt.contourf(xx, yy, z, cmap=plt.cm.Paired, alpha=0.8)
 
''' 绘制训练样本 '''
plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train, cmap=plt.cm.Paired)
plt.xlabel(u'身高')
plt.ylabel(u'体重')
plt.show()
로그인 후 복사

结果分析

输出结果:
[ 0.  0.  1.  0.  0.  1.  1.  0.  0.  1.  1.  0.  0.  1.  1.  0.  1.]
[ 0.  1.  1.  0.  0.  1.  1.  0.  0.  1.  1.  0.  0.  1.  1.  0.  1.]
准确率=0.94, score=0.94
             precision    recall  f1-score   support
       thin      0.89      1.00      0.94         8
        fat       1.00      0.89      0.94         9
avg / total       0.95      0.94      0.94        17

KNN分类器在众多分类算法中属于最简单的之一,需要注意的地方不多。有这几点要说明:

1、KNeighborsClassifier可以设置3种算法:‘brute',‘kd_tree',‘ball_tree'。如果不知道用哪个好,设置‘auto'让KNeighborsClassifier自己根据输入去决定。

2、注意统计准确率时,分类器的score返回的是计算正确的比例,而不是R2。R2一般应用于回归问题。

3、本例先根据样本中身高体重的最大最小值,生成了一个密集网格(步长h=0.01),然后将网格中的每一个点都当成测试样本去测试,最后使用contourf函数,使用不同的颜色标注出了胖、廋两类。

容易看到,本例的分类边界,属于相对复杂,但却又与距离呈现明显规则的锯齿形。

이런 종류의 경계 선형 함수는 처리하기 어렵습니다. KNN 알고리즘은 이러한 경계 문제를 처리하는 데 고유한 이점을 가지고 있습니다. 후속 시리즈에서 볼 수 있듯이 이 데이터 세트의 정확도 = 0.94는 탁월한 결과로 간주됩니다.

【관련 추천: Python3 비디오 튜토리얼

위 내용은 Python을 사용하여 KNN 분류 알고리즘 처리의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

관련 라벨:
원천:jb51.net
본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
인기 튜토리얼
더>
최신 다운로드
더>
웹 효과
웹사이트 소스 코드
웹사이트 자료
프론트엔드 템플릿