때때로 증명사진 배경색을 바꿔야 할 때도 있고, 사진관에 가서 사진을 찍을 시간도 없고, PS로 사진을 오려내기도 쉽지 않아서 오늘은 Python을 사용하여 사진을 자르고 배경색을 변경하는 방법을 공유하세요
Baidu 인물 분할 홈페이지: 등록, 로그 단계를 따르세요 에 들어가서 인증하세요.
콘솔 홈페이지에서 인체 분석 찾기
애플리케이션 만들기
원하는 대로 작성할 수 있지만 신규 사용자는 무료 리소스를 받아야 합니다. 그렇지 않으면 승리합니다. 사용할 수는 없습니다.
생성 완료 후, 나중에 사용할 API Key와 Secret Key 값을 애플리케이션 목록에 기록해 두세요.
이제 계정 등록 및 애플리케이션 생성 작업이 완료되었습니다.
2: 코드 구현 1. 라이브러리 소개import os import requests import base64 import cv2 import numpy as np from PIL import Image from pathlib import Path path = os.getcwd() paths = list(Path(path).glob('*'))
def get_access_token(): url = 'https://aip.baidubce.com/oauth/2.0/token' data = { 'grant_type': 'client_credentials', # 固定值 'client_id': '替换成你的API Key', # 在开放平台注册后所建应用的API Key 'client_secret': '替换成你的Secret Key' # 所建应用的Secret Key } res = requests.post(url, data=data) res = res.json() access_token = res['access_token'] return access_token
def removebg(): try: request_url = "https://aip.baidubce.com/rest/2.0/image-classify/v1/body_seg" # 二进制方式打开图片文件 f = open(name, 'rb') img = base64.b64encode(f.read()) params = {"image":img} access_token = get_access_token() request_url = request_url + "?access_token=" + access_token headers = {'content-type': 'application/x-www-form-urlencoded'} response = requests.post(request_url, data=params, headers=headers) if response: res = response.json()["foreground"] png_name=name.split('.')[0]+".png" with open(png_name,"wb") as f: data = base64.b64decode(res) f.write(data) fullwhite(png_name) #png图片底色填充,视情况舍去 png_jpg(png_name) #png格式转jpg,视情况舍去 os.remove(png_name) #删除原png图片,视情况舍去 print(name+"\t处理成功!") except Exception as e: pass
5. 사진 압축def fullwhite(png_name): im = Image.open(png_name) x,y = im.size try: p = Image.new('RGBA', im.size, (255,255,255)) # 使用白色来填充背景,视情况更改 p.paste(im, (0, 0, x, y), im) p.save(png_name) except: pass로그인 후 복사
#compress_rate:数值越小照片越模糊 def resize(compress_rate = 0.5): im = Image.open(name) w, h = im.size im_resize = im.resize((int(w*compress_rate), int(h*compress_rate))) resize_w, resieze_h = im_resize.size #quality 代表图片质量,值越低越模糊 im_resize.save(name) im.close()
def get_size(): size = os.path.getsize(name) return size / 1024
def png_jpg(png_name): im = Image.open(png_name) bg=Image.new('RGB',im.size,(255,255,255)) bg.paste(im) jpg_name = png_name.split('.')[0]+".jpg" #quality 代表图片质量,值越低越模糊 bg.save(jpg_name,quality=70) im.close()
if __name__ == '__main__': for i in paths: name = os.path.basename(i.name) if(name==os.path.basename(__file__)): continue size = get_size() ##照片压缩 while size >=900: size = get_size() resize() removebg() print(" ")
#人像分割 import os import requests import base64 import cv2 import numpy as np from PIL import Image from pathlib import Path path = os.getcwd() paths = list(Path(path).glob('*')) def get_access_token(): url = 'https://aip.baidubce.com/oauth/2.0/token' data = { 'grant_type': 'client_credentials', # 固定值 'client_id': '替换成你的API Key', # 在开放平台注册后所建应用的API Key 'client_secret': '替换成你的Secret Key' # 所建应用的Secret Key } res = requests.post(url, data=data) res = res.json() access_token = res['access_token'] return access_token def png_jpg(png_name): im = Image.open(png_name) bg=Image.new('RGB',im.size,(255,255,255)) bg.paste(im) jpg_name = png_name.split('.')[0]+".jpg" #quality 代表图片质量,值越低越模糊 bg.save(jpg_name,quality=70) im.close() #compress_rate:数值越小照片越模糊 def resize(compress_rate = 0.5): im = Image.open(name) w, h = im.size im_resize = im.resize((int(w*compress_rate), int(h*compress_rate))) resize_w, resieze_h = im_resize.size #quality 代表图片质量,值越低越模糊 im_resize.save(name) im.close() def get_size(): size = os.path.getsize(name) return size / 1024 def fullwhite(png_name): im = Image.open(png_name) x,y = im.size try: # 使用白色来填充背景 # (alpha band as paste mask). p = Image.new('RGBA', im.size, (255,255,255)) p.paste(im, (0, 0, x, y), im) p.save(png_name) except: pass def removebg(): try: request_url = "https://aip.baidubce.com/rest/2.0/image-classify/v1/body_seg" # 二进制方式打开图片文件 f = open(name, 'rb') img = base64.b64encode(f.read()) params = {"image":img} access_token = get_access_token() request_url = request_url + "?access_token=" + access_token headers = {'content-type': 'application/x-www-form-urlencoded'} response = requests.post(request_url, data=params, headers=headers) if response: res = response.json()["foreground"] png_name=name.split('.')[0]+".png" with open(png_name,"wb") as f: data = base64.b64decode(res) f.write(data) fullwhite(png_name) png_jpg(png_name) os.remove(png_name) print(name+"\t处理成功!") except Exception as e: pass if __name__ == '__main__': for i in paths: name = os.path.basename(i.name) if(name==os.path.basename(__file__)): continue size = get_size() ##照片压缩 while size >=900: size = get_size() resize() removebg() print(" ")
1. 이 프로그램은 원본 파일을 덮어쓰므로, 데이터 손실을 방지하기 위해 사용하기 전에 파일을 백업하시기 바랍니다
원본 이미지: 렌더링
요약
코드가 카운트가 안되네요..그 과정에서 자잘한 문제가 많습니다. 예를 들어 이미지 크기가 4MB를 초과할 수 없어서 사진을 압축해야 하고, 경로 등의 문제가 있다는 점은 아주 만족스럽습니다. 이 기능을 구현하려면!
Python3 영상 튜토리얼
]위 내용은 Python 호출 인터페이스를 통해 컷아웃을 구현하고 배경색을 변경하는 방법을 단계별로 안내합니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!